BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24504389)

  • 1. The transport and metabolism of (14)C-labelled indoleacetic acid in intact pea seedlings.
    Morris DA; Briant RE; Thomson PG
    Planta; 1969 Jun; 89(2):178-97. PubMed ID: 24504389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light and the transport and metabolism of indoleacetic acid in normal and albino dwarf pea seedlings.
    Morris DA
    Planta; 1970 Mar; 91(1):1-7. PubMed ID: 24499976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnitude and Kinetics of Stem Elongation Induced by Exogenous Indole-3-Acetic Acid in Intact Light-Grown Pea Seedlings.
    Yang T; Law DM; Davies PJ
    Plant Physiol; 1993 Jul; 102(3):717-724. PubMed ID: 12231860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of small direct electric currents on the transport of auxin in intact plants.
    Morris DA
    Planta; 1980 Dec; 150(5):431-4. PubMed ID: 24306895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of (14)C from exogenous labelled auxin in lateral root primordia of intact pea seedlings (Pisum sativum L.).
    Rowntree RA; Morris DA
    Planta; 1979 Jan; 144(5):463-6. PubMed ID: 24407391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways of auxin transport in the intact pea seedling (Pisum sativum L.).
    Morris DA; Kadir GO
    Planta; 1972 Jun; 107(2):171-82. PubMed ID: 24477401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of (14)C-labelled sucrose in seedlings of Pisum sativum L. Treated with indoleacetic acid and kinetin.
    Morris DA; Thomas EE
    Planta; 1968 Sep; 83(3):276-81. PubMed ID: 24519215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of Indoleacetic Acid from Tryptophan-C in Cell-free Extracts of Pea Shoot Tips.
    Moore TC; Shaner CA
    Plant Physiol; 1967 Dec; 42(12):1787-96. PubMed ID: 16656720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.).
    Johnson CF; Morris DA
    Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biosynthesis and conjugation of indole-3-acetic acid in germinating seed and seedlings ofDalbergia dolichopetala.
    Monteiro AM; Crozier A; Sandberg G
    Planta; 1988 Dec; 174(4):561-8. PubMed ID: 24221574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and sink activity on the transport of (14)C-labelled indol-3yl-acetic acid in the intact pea plant (Pisum sativum L.).
    Eliezer J; Morris DA
    Planta; 1979 Dec; 147(3):216-24. PubMed ID: 24311035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings.
    Bhalerao RP; Eklöf J; Ljung K; Marchant A; Bennett M; Sandberg G
    Plant J; 2002 Feb; 29(3):325-32. PubMed ID: 11844109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of indole-3-acetic acid and natural occurrence of dioxindole-3-acetic acid derivatives in Vicia roots.
    Tsurumi S; Wada S
    Plant Cell Physiol; 1980 Dec; 21(8):1515-25. PubMed ID: 25385967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytohormones, Rhizobium Mutants, and Nodulation in Legumes : III. Auxin Metabolism in Effective and Ineffective Pea Root Nodules.
    Badenoch-Jones J; Rolfe BG; Letham DS
    Plant Physiol; 1983 Oct; 73(2):347-52. PubMed ID: 16663219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport.
    Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S
    J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specificity of auxin transport in intact pea seedlings (Pisum sativum L.).
    Morris DA; Thomas AG
    Planta; 1974 Sep; 118(3):225-34. PubMed ID: 24442326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of indoleacetic acid in intact roots of Phaseolus coccineus.
    Davies PJ; Mitchell EK
    Planta; 1972 Jun; 105(2):139-54. PubMed ID: 24477753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.
    Poupart J; Rashotte AM; Muday GK; Waddell CS
    Plant Physiol; 2005 Nov; 139(3):1460-71. PubMed ID: 16258013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.