These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24504425)

  • 21. Loading and gait symmetry during level and stair walking in asymptomatic subjects with knee osteoarthritis: importance of quadriceps femoris in reducing impact force during heel strike?
    Liikavainio T; Isolehto J; Helminen HJ; Perttunen J; Lepola V; Kiviranta I; Arokoski JP; Komi PV
    Knee; 2007 Jun; 14(3):231-8. PubMed ID: 17451958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking.
    Yung-Hui L; Wei-Hsien H
    Appl Ergon; 2005 May; 36(3):355-62. PubMed ID: 15854579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface.
    Fong DT; Mao DW; Li JX; Hong Y
    J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ontogenetic changes in foot strike pattern and calcaneal loading during walking in young children.
    Zeininger A; Schmitt D; Jensen JL; Shapiro LJ
    Gait Posture; 2018 Jan; 59():18-22. PubMed ID: 28982055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modified pressure distribution patterns in walking following reduction of plantar sensation.
    Eils E; Nolte S; Tewes M; Thorwesten L; Völker K; Rosenbaum D
    J Biomech; 2002 Oct; 35(10):1307-13. PubMed ID: 12231276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vertical ground reaction forces during gait in children with and without calcaneal apophysitis.
    McSweeney S; Reed LF; Wearing SC
    Gait Posture; 2019 Jun; 71():126-130. PubMed ID: 31054494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microchambers and macrochambers in heel pads: are they functionally different?
    Hsu CC; Tsai WC; Wang CL; Pao SH; Shau YW; Chuan YS
    J Appl Physiol (1985); 2007 Jun; 102(6):2227-31. PubMed ID: 17272407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the effectiveness of materials in attenuating high frequency shock during gait using filterbank analysis.
    Gillespie KA; Dickey JP
    Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):50-9. PubMed ID: 12527247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
    Webber JT; Raichlen DA
    J Exp Biol; 2016 Dec; 219(Pt 23):3729-3737. PubMed ID: 27903628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plantar pressure reduction in step-to gait: a biomechanical investigation and clinical feasibility study.
    Drerup B; Szczepaniak A; Wetz HH
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1073-9. PubMed ID: 18555568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deformation characteristics of the heel region of the shod foot during a simulated heel strike: the effect of varying midsole hardness.
    Aerts P; De Clercq D
    J Sports Sci; 1993 Oct; 11(5):449-61. PubMed ID: 8301705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The oscillatory behavior of the CoM facilitates mechanical energy balance between push-off and heel strike.
    Kim S; Park S
    J Biomech; 2012 Jan; 45(2):326-33. PubMed ID: 22035641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heel to toe motion characteristics in Parkinson patients during free walking.
    Kimmeskamp S; Hennig EM
    Clin Biomech (Bristol, Avon); 2001 Nov; 16(9):806-12. PubMed ID: 11714558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance of heel pad confinement for the shock absorption at heel strike.
    Jørgensen U; Ekstrand J
    Int J Sports Med; 1988 Dec; 9(6):468-73. PubMed ID: 3253241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plantar soft tissue thickness during ground contact in walking.
    Cavanagh PR
    J Biomech; 1999 Jun; 32(6):623-8. PubMed ID: 10332627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.