BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24504478)

  • 21. Astyanax transgenesis and husbandry: how cavefish enters the laboratory.
    Elipot Y; Legendre L; Père S; Sohm F; Rétaux S
    Zebrafish; 2014 Aug; 11(4):291-9. PubMed ID: 25004161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary genetics of metamorphic failure using wild-caught vs. laboratory axolotls (Ambystoma mexicanum).
    Voss SR; Shaffer HB
    Mol Ecol; 2000 Sep; 9(9):1401-7. PubMed ID: 10972778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments.
    Felker A; Mosimann C
    Methods Cell Biol; 2016; 135():219-44. PubMed ID: 27443928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thyroxine and triiodothyronine in plasma and thyroids of the neotenic and metamorphosed axolotl Ambystoma mexicanum: influence of TRH injections.
    Jacobs GF; Michielsen RP; Kühn ER
    Gen Comp Endocrinol; 1988 Apr; 70(1):145-51. PubMed ID: 3131185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution.
    Ye F; Zhang G; E W; Chen H; Yu C; Yang L; Fu Y; Li J; Fu S; Sun Z; Fei L; Guo Q; Wang J; Xiao Y; Wang X; Zhang P; Ma L; Ge D; Xu S; Caballero-Pérez J; Cruz-Ramírez A; Zhou Y; Chen M; Fei JF; Han X; Guo G
    Nat Commun; 2022 Jul; 13(1):4228. PubMed ID: 35869072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Axolotl (Ambystoma mexicanum) in vitro fertilization.
    Khattak S; Tanaka EM
    Cold Spring Harb Protoc; 2009 Aug; 2009(8):pdb.prot5263. PubMed ID: 20147239
    [No Abstract]   [Full Text] [Related]  

  • 27. Is salamander hindlimb regeneration similar to that of the forelimb? Anatomical and morphogenetic analysis of hindlimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative and developmental studies.
    Diogo R; Murawala P; Tanaka EM
    J Anat; 2014 Apr; 224(4):459-68. PubMed ID: 24325444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The history of the oldest self-sustaining laboratory animal: 150 years of axolotl research.
    Reiß C; Olsson L; Hoßfeld U
    J Exp Zool B Mol Dev Evol; 2015 Jul; 324(5):393-404. PubMed ID: 25920413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. I-SceI meganuclease-mediated transgenesis in Xenopus.
    Pan FC; Chen Y; Loeber J; Henningfeld K; Pieler T
    Dev Dyn; 2006 Jan; 235(1):247-52. PubMed ID: 16258935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simple method of transgenesis using I-SceI meganuclease in Xenopus.
    Ishibashi S; Love NR; Amaya E
    Methods Mol Biol; 2012; 917():205-18. PubMed ID: 22956090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration.
    Sobkow L; Epperlein HH; Herklotz S; Straube WL; Tanaka EM
    Dev Biol; 2006 Feb; 290(2):386-97. PubMed ID: 16387293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thyroid hormone receptors and iodothyronine deiodinases in the developing Mexican axolotl, Ambystoma mexicanum.
    Galton VA
    Gen Comp Endocrinol; 1992 Jan; 85(1):62-70. PubMed ID: 1563619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The meganuclease I-SceI containing nuclear localization signal (NLS-I-SceI) efficiently mediated mammalian germline transgenesis via embryo cytoplasmic microinjection.
    Wang Y; Zhou XY; Xiang PY; Wang LL; Tang H; Xie F; Li L; Wei H
    PLoS One; 2014; 9(9):e108347. PubMed ID: 25250567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos.
    Bevacqua RJ; Canel NG; Hiriart MI; Sipowicz P; Rozenblum GT; Vitullo A; Radrizzani M; Fernandez Martin R; Salamone DF
    Theriogenology; 2013 Jul; 80(2):104-13.e1-29. PubMed ID: 23623164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Difference of the in vivo responsiveness to thyrotropin stimulation between the neotenic and metamorphosed axolotl, Ambystoma mexicanum: failure of prolactin to block the thyrotropin-induced thyroxine release.
    Darras VM; Kühn ER
    Gen Comp Endocrinol; 1984 Nov; 56(2):321-5. PubMed ID: 6510692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.
    Robles-Mendoza C; Zúñiga-Lagunes SR; Ponce de León-Hill CA; Hernández-Soto J; Vanegas-Pérez C
    Aquat Toxicol; 2011 Oct; 105(3-4):728-34. PubMed ID: 21996259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimized transgenesis in Xenopus laevis/gilli isogenetic clones for immunological studies.
    Nedelkovska H; Robert J
    Genesis; 2012 Mar; 50(3):300-6. PubMed ID: 21954010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Axolotl: A resourceful vertebrate model for regeneration and beyond.
    Bölük A; Yavuz M; Demircan T
    Dev Dyn; 2022 Dec; 251(12):1914-1933. PubMed ID: 35906989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of thyroid hormone concentration on the transcriptional response underlying induced metamorphosis in the Mexican axolotl (Ambystoma).
    Page RB; Voss SR; Samuels AK; Smith JJ; Putta S; Beachy CK
    BMC Genomics; 2008 Feb; 9():78. PubMed ID: 18267027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Corticotropin-releasing hormone-mediated metamorphosis in the neotenic axolotl Ambystoma mexicanum: synergistic involvement of thyroxine and corticoids on brain type II deiodinase.
    Kühn ER; De Groef B; Van der Geyten S; Darras VM
    Gen Comp Endocrinol; 2005 Aug; 143(1):75-81. PubMed ID: 15993107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.