BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24504502)

  • 1. In vitro and in vivo direct monitoring of miRNA-22 expression in isoproterenol-induced cardiac hypertrophy by bioluminescence imaging.
    Tu Y; Wan L; Zhao D; Bu L; Dong D; Yin Z; Cheng Z; Shen B
    Eur J Nucl Med Mol Imaging; 2014 May; 41(5):972-84. PubMed ID: 24504502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation.
    Lee JY; Kim S; Hwang DW; Jeong JM; Chung JK; Lee MC; Lee DS
    J Nucl Med; 2008 Feb; 49(2):285-94. PubMed ID: 18199619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioimaging of microRNA124a-independent neuronal differentiation of human G2 neural stem cells.
    Lee J; Hwang DW; Kim SU; Lee DS; Lee YS; Heo H; Ali BA; Al-Khedhairy AA; Kim S
    FEBS Open Bio; 2015; 5():647-55. PubMed ID: 26380808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of miR-221 biogenesis in papillary thyroid carcinoma.
    Kim HJ; Chung JK; Hwang DW; Lee DS; Kim S
    Mol Imaging Biol; 2009; 11(2):71-8. PubMed ID: 19030936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-22 downregulation by atorvastatin in a mouse model of cardiac hypertrophy: a new mechanism for antihypertrophic intervention.
    Tu Y; Wan L; Bu L; Zhao D; Dong D; Huang T; Cheng Z; Shen B
    Cell Physiol Biochem; 2013; 31(6):997-1008. PubMed ID: 23860036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma.
    Kim HJ; Kim YH; Lee DS; Chung JK; Kim S
    J Nucl Med; 2008 Oct; 49(10):1686-93. PubMed ID: 18794255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling.
    Bi X; Zhang Y; Yu Y; Yuan J; Xu S; Liu F; Ye J; Liu P
    Cell Biol Int; 2022 Feb; 46(2):288-299. PubMed ID: 34854520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer using a dual reporter gene imaging system.
    Wang F; Song X; Li X; Xin J; Wang S; Yang W; Wang J; Wu K; Chen X; Liang J; Tian J; Cao F
    PLoS One; 2013; 8(4):e61792. PubMed ID: 23613938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Expression of microRNA in Adult Rat Heart with Isoproterenol-Induced Cardiac Hypertrophy.
    Gan M; Zhang S; Fan Y; Tan Y; Guo Z; Chen L; Bai L; Jiang D; Hao X; Li X; Shen L; Zhu L
    Cells; 2020 May; 9(5):. PubMed ID: 32397324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual optical biosensors for imaging microRNA-1 during myogenesis.
    Kang WJ; Cho YL; Chae JR; Lee JD; Ali BA; Al-Khedhairy AA; Lee CH; Kim S
    Biomaterials; 2012 Sep; 33(27):6430-7. PubMed ID: 22698721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genistein reverses isoproterenol-induced cardiac hypertrophy by regulating miR-451/TIMP2.
    Gan M; Zheng T; Shen L; Tan Y; Fan Y; Shuai S; Bai L; Li X; Wang J; Zhang S; Zhu L
    Biomed Pharmacother; 2019 Apr; 112():108618. PubMed ID: 30798118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-212 Promotes Cardiomyocyte Hypertrophy through Regulating Transcription Factor 7 Like 2.
    Yuan J; Yuan G
    Mediators Inflamm; 2022; 2022():5187218. PubMed ID: 36060928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Let-7a Is an Antihypertrophic Regulator in the Heart via Targeting Calmodulin.
    Zhou X; Sun F; Luo S; Zhao W; Yang T; Zhang G; Gao M; Lu R; Shu Y; Mu W; Zhuang Y; Ding F; Xu C; Lu Y
    Int J Biol Sci; 2017; 13(1):22-31. PubMed ID: 28123343
    [No Abstract]   [Full Text] [Related]  

  • 14. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice.
    Wang J; Song Y; Zhang Y; Xiao H; Sun Q; Hou N; Guo S; Wang Y; Fan K; Zhan D; Zha L; Cao Y; Li Z; Cheng X; Zhang Y; Yang X
    Cell Res; 2012 Mar; 22(3):516-27. PubMed ID: 21844895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Functional Bioimaging of Neuron-Specific MicroRNA Dynamics during Neuronal Differentiation Using a Dual Luciferase Reporter.
    Zheng H; Wang X; Chen S; Shi X; Xie J; Mao W; Tian J; Wang F
    ACS Chem Neurosci; 2019 Mar; 10(3):1696-1705. PubMed ID: 30474964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93.
    Wo Y; Guo J; Li P; Yang H; Wo J
    Cardiovasc Pathol; 2018; 35():29-36. PubMed ID: 29747050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [MicroRNA-133a attenuates isoproterenol-induced neonatal rat cardiomyocyte hypertrophy by downregulating L-type calcium channel α1C subunit gene expression].
    Wu Y; Wang YQ; Wang BX
    Zhonghua Xin Xue Guan Bing Za Zhi; 2013 Jun; 41(6):507-13. PubMed ID: 24113045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.
    Huang ZP; Chen J; Seok HY; Zhang Z; Kataoka M; Hu X; Wang DZ
    Circ Res; 2013 Apr; 112(9):1234-43. PubMed ID: 23524588
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Ming S; Shui-Yun W; Wei Q; Jian-Hui L; Ru-Tai H; Lei S; Mei J; Hui W; Ji-Zheng W
    Biosci Rep; 2018 Apr; 38(2):. PubMed ID: 29440459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase.
    Wang YS; Zhou J; Hong K; Cheng XS; Li YG
    Cell Physiol Biochem; 2015; 35(4):1546-56. PubMed ID: 25792377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.