These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24504538)

  • 1. Loading and release of amine drugs by ion-exchange fibers: role of amine type.
    Gao Y; Liu H; Yuan J; Yang Y; Che X; Hou Y; Li S
    J Pharm Sci; 2014 Apr; 103(4):1095-103. PubMed ID: 24504538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the Size Distribution for Diffusion-Controlled Drug Release From Drug Delivery Systems of Various Geometries.
    Spiridonova TI; Tverdokhlebov SI; Anissimov YG
    J Pharm Sci; 2019 Aug; 108(8):2690-2697. PubMed ID: 30980858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fiber distribution model for predicting drug release rates.
    Petlin DG; Amarah AA; Tverdokhlebov SI; Anissimov YG
    J Control Release; 2017 Jul; 258():218-225. PubMed ID: 28526437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.
    Wischke C; Behl M; Lendlein A
    Expert Opin Drug Deliv; 2013 Sep; 10(9):1193-205. PubMed ID: 23668314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery.
    Reza MS; Quadir MA; Haider SS
    J Pharm Pharm Sci; 2003; 6(2):282-91. PubMed ID: 12935440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs.
    Quinteros DA; Rigo VR; Kairuz AF; Olivera ME; Manzo RH; Allemandi DA
    Eur J Pharm Sci; 2008 Jan; 33(1):72-9. PubMed ID: 18060747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release.
    Kapoor S; Hegde R; Bhattacharyya AJ
    J Control Release; 2009 Nov; 140(1):34-9. PubMed ID: 19654029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion Exchange Resins Transforming Drug Delivery Systems.
    Gupta S; Benien P; Sahoo PK
    Curr Drug Deliv; 2010 Jul; 7(3):252-62. PubMed ID: 20497105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH- and ion-sensitive polymers for drug delivery.
    Yoshida T; Lai TC; Kwon GS; Sako K
    Expert Opin Drug Deliv; 2013 Nov; 10(11):1497-513. PubMed ID: 23930949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier.
    Narasimhan B; Peppas NA
    J Pharm Sci; 1997 Mar; 86(3):297-304. PubMed ID: 9050796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosensing and drug delivery at the microscale : novel devices for controlled and responsive drug delivery.
    Robitzki AA; Kurz R
    Handb Exp Pharmacol; 2010; (197):87-112. PubMed ID: 20217527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmaceutically used polymers: principles, structures, and applications of pharmaceutical delivery systems.
    Khandare J; Haag R
    Handb Exp Pharmacol; 2010; (197):221-50. PubMed ID: 20217532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and evaluation of cationic exchange nanofibers for controlled drug delivery systems.
    Nitanan T; Akkaramongkolporn P; Ngawhirunpat T; Rojanarata T; Panomsuk S; Opanasopit P
    Int J Pharm; 2013 Jun; 450(1-2):345-53. PubMed ID: 23623792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tramadol loading, release and iontophoretic characteristics of ion-exchange fiber.
    Gao Y; Yuan J; Liu H; Yang Y; Hou Y; Li S
    Int J Pharm; 2014 Apr; 465(1-2):102-11. PubMed ID: 24530391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and in vitro evaluation of a film-controlled dosage form self-converted from monolithic tablet in gastrointestinal environment.
    Zhang T; Mao S; Sun W
    J Pharm Sci; 2010 Nov; 99(11):4678-90. PubMed ID: 20845465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of drug release from polymeric delivery systems--a review.
    Kanjickal DG; Lopina ST
    Crit Rev Ther Drug Carrier Syst; 2004; 21(5):345-86. PubMed ID: 15717734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling microstructure development and release kinetics in controlled drug release coatings.
    Saylor DM; Kim CS; Patwardhan DV; Warren JA
    J Pharm Sci; 2009 Jan; 98(1):169-86. PubMed ID: 18481310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic applications of electrospun nanofibers for drug delivery systems.
    Son YJ; Kim WJ; Yoo HS
    Arch Pharm Res; 2014 Jan; 37(1):69-78. PubMed ID: 24234913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating drug loading and release profile of beta-cyclodextrin polymers by means of cross-linked degree.
    Wang QF; Li SM; Zhang YY; Zhang H
    Yao Xue Xue Bao; 2011 Feb; 46(2):221-6. PubMed ID: 21539152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.