These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 24504540)
1. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria. Fujita T; Huh J; Saikin SK; Brookes JC; Aspuru-Guzik A Photosynth Res; 2014 Jun; 120(3):273-89. PubMed ID: 24504540 [TBL] [Abstract][Full Text] [Related]
2. Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria. Linnanto JM; Korppi-Tommola JE J Phys Chem B; 2013 Sep; 117(38):11144-61. PubMed ID: 23848459 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Savikhin S; van Noort PI; Zhu Y; Lin S; Blankenship RE; Struve WS Chem Phys; 1995 May; 194(2-3):245-58. PubMed ID: 11540594 [TBL] [Abstract][Full Text] [Related]
4. Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus. Novoderezhkin VI; Taisova AS; Fetisova ZG; Blankenship RE; Savikhin S; Buck DR; Struve WS Biophys J; 1998 Apr; 74(4):2069-75. PubMed ID: 9545065 [TBL] [Abstract][Full Text] [Related]
5. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein. Saito S; Higashi M; Fleming GR J Phys Chem B; 2019 Nov; 123(46):9762-9772. PubMed ID: 31657928 [TBL] [Abstract][Full Text] [Related]
6. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex. Yeh SH; Kais S J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917 [TBL] [Abstract][Full Text] [Related]
7. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269 [TBL] [Abstract][Full Text] [Related]
8. Theory of Anisotropic Circular Dichroism of Excitonically Coupled Systems: Application to the Baseplate of Green Sulfur Bacteria. Lindorfer D; Renger T J Phys Chem B; 2018 Mar; 122(10):2747-2756. PubMed ID: 29420888 [TBL] [Abstract][Full Text] [Related]
9. Structure of Light-Harvesting Aggregates in Individual Chlorosomes. Günther LM; Jendrny M; Bloemsma EA; Tank M; Oostergetel GT; Bryant DA; Knoester J; Köhler J J Phys Chem B; 2016 Jun; 120(24):5367-76. PubMed ID: 27240572 [TBL] [Abstract][Full Text] [Related]
11. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Prokhorenko VI; Steensgaard DB; Holzwarth AR Biophys J; 2000 Oct; 79(4):2105-20. PubMed ID: 11023914 [TBL] [Abstract][Full Text] [Related]
12. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318 [TBL] [Abstract][Full Text] [Related]
13. Alternative Excitonic Structure in the Baseplate (BChl a-CsmA Complex) of the Chlorosome from Chlorobaculum tepidum. Kell A; Chen J; Jassas M; Tang JK; Jankowiak R J Phys Chem Lett; 2015 Jul; 6(14):2702-7. PubMed ID: 26266851 [TBL] [Abstract][Full Text] [Related]
14. Excitation energy transfer and trapping dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. Xin Y; Pan J; Collins AM; Lin S; Blankenship RE Photosynth Res; 2012 Mar; 111(1-2):149-56. PubMed ID: 21792612 [TBL] [Abstract][Full Text] [Related]
15. Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex. Orf GS; Saer RG; Niedzwiedzki DM; Zhang H; McIntosh CL; Schultz JW; Mirica LM; Blankenship RE Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4486-93. PubMed ID: 27335466 [TBL] [Abstract][Full Text] [Related]
16. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. Yakovlev AG; Taisova AS; Fetisova ZG Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107 [TBL] [Abstract][Full Text] [Related]
17. Limitations of Linear Dichroism Spectroscopy for Elucidating Structural Issues of Light-Harvesting Aggregates in Chlorosomes. Günther LM; Knoester J; Köhler J Molecules; 2021 Feb; 26(4):. PubMed ID: 33572047 [TBL] [Abstract][Full Text] [Related]
18. Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum. Valleau S; Saikin SK; Ansari-Oghol-Beig D; Rostami M; Mossallaei H; Aspuru-Guzik A ACS Nano; 2014 Apr; 8(4):3884-94. PubMed ID: 24641680 [TBL] [Abstract][Full Text] [Related]
19. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method. Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349 [TBL] [Abstract][Full Text] [Related]
20. Spectra and dynamics in the B800 antenna: comparing hierarchical equations, Redfield and Förster theories. Novoderezhkin V; van Grondelle R J Phys Chem B; 2013 Sep; 117(38):11076-90. PubMed ID: 23531197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]