These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 24504703)

  • 1. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G; Pickard FC; Mei Y; Brooks BR
    J Comput Aided Mol Des; 2014 Mar; 28(3):245-57. PubMed ID: 24504703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
    König G; Mei Y; Pickard FC; Simmonett AC; Miller BT; Herbert JM; Woodcock HL; Brooks BR; Shao Y
    J Chem Theory Comput; 2016 Jan; 12(1):332-44. PubMed ID: 26613419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient protocol for obtaining accurate hydration free energies using quantum chemistry and reweighting from molecular dynamics simulations.
    Pickard FC; König G; Simmonett AC; Shao Y; Brooks BR
    Bioorg Med Chem; 2016 Oct; 24(20):4988-4997. PubMed ID: 27667551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Methods To Reweight from Classical Molecular Simulations to QM/MM Potentials.
    Dybeck EC; König G; Brooks BR; Shirts MR
    J Chem Theory Comput; 2016 Apr; 12(4):1466-80. PubMed ID: 26928941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK
    Pickard FC; König G; Tofoleanu F; Lee J; Simmonett AC; Shao Y; Ponder JW; Brooks BR
    J Comput Aided Mol Des; 2016 Nov; 30(11):1087-1100. PubMed ID: 27646286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory.
    Fu J; Liu Y; Wu J
    J Comput Aided Mol Des; 2014 Mar; 28(3):299-304. PubMed ID: 24622881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes.
    König G; Hudson PS; Boresch S; Woodcock HL
    J Chem Theory Comput; 2014 Apr; 10(4):1406-1419. PubMed ID: 24803863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge.
    Sandberg L
    J Comput Aided Mol Des; 2014 Mar; 28(3):211-9. PubMed ID: 24550133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
    König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended solvent-contact model approach to SAMPL4 blind prediction challenge for hydration free energies.
    Park H
    J Comput Aided Mol Des; 2014 Mar; 28(3):175-86. PubMed ID: 24554191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.
    Jia X; Wang M; Shao Y; König G; Brooks BR; Zhang JZ; Mei Y
    J Chem Theory Comput; 2016 Feb; 12(2):499-511. PubMed ID: 26731197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Strategy for the Calculation of Solvation Free Energies in Water and Chloroform at the Quantum Mechanical/Molecular Mechanical Level.
    Wang M; Li P; Jia X; Liu W; Shao Y; Hu W; Zheng J; Brooks BR; Mei Y
    J Chem Inf Model; 2017 Oct; 57(10):2476-2489. PubMed ID: 28933850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive all-atom Monte Carlo sampling and QM/MM corrections in the SAMPL4 hydration free energy challenge.
    Genheden S; Cabedo Martinez AI; Criddle MP; Essex JW
    J Comput Aided Mol Des; 2014 Mar; 28(3):187-200. PubMed ID: 24488307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the semi-explicit assembly model of aqueous solvation in the SAMPL4 challenge.
    Li L; Dill KA; Fennell CJ
    J Comput Aided Mol Des; 2014 Mar; 28(3):259-64. PubMed ID: 24474161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blind prediction of solvation free energies from the SAMPL4 challenge.
    Mobley DL; Wymer KL; Lim NM; Guthrie JP
    J Comput Aided Mol Des; 2014 Mar; 28(3):135-50. PubMed ID: 24615156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treating entropy and conformational changes in implicit solvent simulations of small molecules.
    Mobley DL; Dill KA; Chodera JD
    J Phys Chem B; 2008 Jan; 112(3):938-46. PubMed ID: 18171044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of free energies of hydration with COSMO-RS on the SAMPL4 data set.
    Reinisch J; Klamt A
    J Comput Aided Mol Des; 2014 Mar; 28(3):169-73. PubMed ID: 24420026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating QM/MM free energy calculations: representing the surroundings by an updated mean charge distribution.
    Rosta E; Haranczyk M; Chu ZT; Warshel A
    J Phys Chem B; 2008 May; 112(18):5680-92. PubMed ID: 18412414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.
    Kearns FL; Hudson PS; Boresch S; Woodcock HL
    Methods Enzymol; 2016; 577():75-104. PubMed ID: 27498635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.