BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24504964)

  • 21. An antibody that binds a neutrophil membrane protein, ERp72, primes human neutrophils for enhanced oxidative metabolism in response to formyl-methionyl-leucyl-phenylalanine. Implications for ERp72 in the signal transduction pathway for neutrophil priming.
    Weisbart RH
    J Immunol; 1992 Jun; 148(12):3958-63. PubMed ID: 1318337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases.
    Quinn MT; Gauss KA
    J Leukoc Biol; 2004 Oct; 76(4):760-81. PubMed ID: 15240752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of cis-urocanic acid on bovine neutrophil generation of reactive oxygen species.
    Rinaldi M; Moroni P; Leino L; Laihia J; Paape MJ; Bannerman DD
    J Dairy Sci; 2006 Nov; 89(11):4188-201. PubMed ID: 17033005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-A activates membrane bound multicomponent enzyme complex, NADPH oxidase in human neutrophils.
    Mishra A; Dwivedi PD; Verma AS; Ray PK
    Immunopharmacol Immunotoxicol; 1999 Nov; 21(4):683-94. PubMed ID: 10584204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of gp91
    Raad H; Derkawi RA; Tlili A; Belambri SA; Dang PM; El-Benna J
    Methods Mol Biol; 2019; 1982():341-352. PubMed ID: 31172483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils.
    Creed TM; Tandon S; Ward RA; McLeish KR
    Inflamm Res; 2017 Oct; 66(10):891-899. PubMed ID: 28638979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites.
    Dang PM; Stensballe A; Boussetta T; Raad H; Dewas C; Kroviarski Y; Hayem G; Jensen ON; Gougerot-Pocidalo MA; El-Benna J
    J Clin Invest; 2006 Jul; 116(7):2033-43. PubMed ID: 16778989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling.
    Forman HJ; Torres M
    Am J Respir Crit Care Med; 2002 Dec; 166(12 Pt 2):S4-8. PubMed ID: 12471082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peroxiredoxin-6 and NADPH oxidase activity.
    Ambruso DR
    Methods Enzymol; 2013; 527():145-67. PubMed ID: 23830630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen peroxide modulation of the superoxide anion production by stimulated neutrophils.
    Dekaris I; Marotti T; Sprong RC; van Oirschot JF; van Asbeck BS
    Immunopharmacol Immunotoxicol; 1998 Feb; 20(1):103-17. PubMed ID: 9543702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of respiratory burst products, released or retained, during activation of professional phagocytes.
    Bylund J; Björnsdottir H; Sundqvist M; Karlsson A; Dahlgren C
    Methods Mol Biol; 2014; 1124():321-38. PubMed ID: 24504962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NADPH oxidase activity of neutrophil specific granules: requirements for cytosolic components and evidence of assembly during cell activation.
    Ambruso DR; Cusack N; Thurman G
    Mol Genet Metab; 2004 Apr; 81(4):313-21. PubMed ID: 15059619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of alpha1-acid glycoprotein on bovine neutrophil respiratory burst activity and IL-8 production.
    Rinaldi M; Ceciliani F; Lecchi C; Moroni P; Bannerman DD
    Vet Immunol Immunopathol; 2008 Dec; 126(3-4):199-210. PubMed ID: 18692908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the inhibition by acetylshikonin of the respiratory burst in rat neutrophils.
    Wang JP; Tsao LT; Raung SL; Hsu MF; Kuo SC
    Br J Pharmacol; 1997 Jun; 121(3):409-16. PubMed ID: 9179381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The phagocyte respiratory burst: Historical perspectives and recent advances.
    Thomas DC
    Immunol Lett; 2017 Dec; 192():88-96. PubMed ID: 28864335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interleukin-18 primes the oxidative burst of neutrophils in response to formyl-peptides: role of cytochrome b558 translocation and N-formyl peptide receptor endocytosis.
    Elbim C; Guichard C; Dang PM; Fay M; Pedruzzi E; Demur H; Pouzet C; El Benna J; Gougerot-Pocidalo MA
    Clin Diagn Lab Immunol; 2005 Mar; 12(3):436-46. PubMed ID: 15753257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uncompetitive inhibition of superoxide generation by a synthetic peptide corresponding to a predicted NADPH binding site in gp91-phox, a component of the phagocyte respiratory oxidase.
    Tsuchiya T; Imajoh-Ohmi S; Nunoi H; Kanegasaki S
    Biochem Biophys Res Commun; 1999 Apr; 257(1):124-8. PubMed ID: 10092521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative and nitrative modifications of enkephalins by human neutrophils: effect of nitroenkephalin on leukocyte functional responses.
    Capuozzo E; Pecci L; Giovannitti F; Baseggio Conrado A; Fontana M
    Amino Acids; 2012 Aug; 43(2):875-84. PubMed ID: 22113643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring the Asian seabass (Lates calcarifer) neutrophil respiratory burst activity by the dihydrorhodamine-123 reduction flow cytometry assay in whole blood.
    Hastuti SD; Quach A; Costabile M; Barton MD; Pyecroft SB; Ferrante A
    Fish Shellfish Immunol; 2019 Sep; 92():871-880. PubMed ID: 31299464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.