These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24505015)

  • 61. Induction of defense responses against Magnaporthe oryzae in rice seedling by a new potential biocontrol agent Streptomyces JD211.
    Shao Z; Li Z; Fu Y; Wen Y; Wei S
    J Basic Microbiol; 2018 Aug; 58(8):686-697. PubMed ID: 29901825
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparative transcriptomic analysis reveals the mechanistic basis of Pib-mediated broad spectrum resistance against Magnaporthe oryzae.
    Qiu J; Lu F; Xiong M; Meng S; Shen X; Kou Y
    Funct Integr Genomics; 2020 Nov; 20(6):787-799. PubMed ID: 32895765
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Methyl jasmonate induces ATP biosynthesis deficiency and accumulation of proteins related to secondary metabolism in Catharanthus roseus (L.) G. hairy roots.
    Ruiz-May E; De-la-Peña C; Galaz-Ávalos RM; Lei Z; Watson BS; Sumner LW; Loyola-Vargas VM
    Plant Cell Physiol; 2011 Aug; 52(8):1401-21. PubMed ID: 21727181
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interactive effects of Magnaporthe inoculation and nitrogen doses on the plant enzyme machinery and phyllosphere microbiome of resistant and susceptible rice cultivars.
    Thapa S; Prasanna R; Ramakrishnan B; Sheoran N; Kumar A; Velmourougane K; Kumar A
    Arch Microbiol; 2018 Nov; 200(9):1287-1305. PubMed ID: 29943213
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato.
    Chen YL; Lee CY; Cheng KT; Chang WH; Huang RN; Nam HG; Chen YR
    Plant Cell; 2014 Oct; 26(10):4135-48. PubMed ID: 25361956
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells.
    Sadeghnezhad E; Sharifi M; Zare-Maivan H
    Planta; 2016 Jul; 244(1):75-85. PubMed ID: 26945858
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein.
    Robert S; Goulet MC; D'Aoust MA; Sainsbury F; Michaud D
    Plant Biotechnol J; 2015 Oct; 13(8):1169-79. PubMed ID: 26286859
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice.
    Yamada S; Kano A; Tamaoki D; Miyamoto A; Shishido H; Miyoshi S; Taniguchi S; Akimitsu K; Gomi K
    Plant Cell Physiol; 2012 Dec; 53(12):2060-72. PubMed ID: 23104764
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.).
    Koramutla MK; Kaur A; Negi M; Venkatachalam P; Bhattacharya R
    Planta; 2014 Jul; 240(1):177-94. PubMed ID: 24771023
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola.
    Figueiredo A; Martins J; Sebastiana M; Guerreiro A; Silva A; Matos AR; Monteiro F; Pais MS; Roepstorff P; Coelho AV
    J Proteomics; 2017 Jan; 152():48-57. PubMed ID: 27989945
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Abscisic acid negatively interferes with basal defence of barley against Magnaporthe oryzae.
    Ulferts S; Delventhal R; Splivallo R; Karlovsky P; Schaffrath U
    BMC Plant Biol; 2015 Jan; 15():7. PubMed ID: 25604965
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation.
    Luo H; Zhu Y; Song J; Xu L; Sun C; Zhang X; Xu Y; He L; Sun W; Xu H; Wang B; Li X; Li C; Liu J; Chen S
    Physiol Plant; 2014 Oct; 152(2):241-55. PubMed ID: 24660670
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes.
    Cheng AX; Xiang CY; Li JX; Yang CQ; Hu WL; Wang LJ; Lou YG; Chen XY
    Phytochemistry; 2007 Jun; 68(12):1632-41. PubMed ID: 17524436
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Proteomic dissection of the rice-Fusarium fujikuroi interaction and the correlation between the proteome and transcriptome under disease stress.
    Ji Z; Zeng Y; Liang Y; Qian Q; Yang C
    BMC Genomics; 2019 Jan; 20(1):91. PubMed ID: 30691406
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures.
    Faurie B; Cluzet S; Mérillon JM
    J Plant Physiol; 2009 Nov; 166(17):1863-77. PubMed ID: 19631405
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor.
    Mandujano-Chávez A; Schoenbeck MA; Ralston LF; Lozoya-Gloria E; Chappell J
    Arch Biochem Biophys; 2000 Sep; 381(2):285-94. PubMed ID: 11032417
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fungal Elicitor MoHrip2 Induces Disease Resistance in Rice Leaves, Triggering Stress-Related Pathways.
    Khan NU; Liu M; Yang X; Qiu D
    PLoS One; 2016; 11(6):e0158112. PubMed ID: 27348754
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate.
    Liu D; Zhao Q; Cui X; Chen R; Li X; Qiu B; Ge F
    Genes Genomics; 2019 Dec; 41(12):1383-1396. PubMed ID: 31493262
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice.
    De Vleesschauwer D; Chernin L; Höfte MM
    BMC Plant Biol; 2009 Jan; 9():9. PubMed ID: 19161601
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea.
    Xie XZ; Xue YJ; Zhou JJ; Zhang B; Chang H; Takano M
    Mol Plant; 2011 Jul; 4(4):688-96. PubMed ID: 21357645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.