BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24505115)

  • 1. Phosphoprotein secretome of tumor cells as a source of candidates for breast cancer biomarkers in plasma.
    Zawadzka AM; Schilling B; Cusack MP; Sahu AK; Drake P; Fisher SJ; Benz CC; Gibson BW
    Mol Cell Proteomics; 2014 Apr; 13(4):1034-49. PubMed ID: 24505115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer.
    Browne BC; Hochgräfe F; Wu J; Millar EK; Barraclough J; Stone A; McCloy RA; Lee CS; Roberts C; Ali NA; Boulghourjian A; Schmich F; Linding R; Farrow L; Gee JM; Nicholson RI; O'Toole SA; Sutherland RL; Musgrove EA; Butt AJ; Daly RJ
    FEBS J; 2013 Nov; 280(21):5237-57. PubMed ID: 23876235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated cell line-based discovery strategy identified follistatin and kallikrein 6 as serum biomarker candidates of breast carcinoma.
    Mangé A; Dimitrakopoulos L; Soosaipillai A; Coopman P; Diamandis EP; Solassol J
    J Proteomics; 2016 Jun; 142():114-21. PubMed ID: 27168011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Phosphopeptide Microarray Based Interactome Map in Breast Cancer Cells Reveals Phosphoprotein-GRB2 Cell Signaling Networks.
    Krishnamoorthy S; Liu Z; Hong A; Zhu R; Chen H; Li T; Zhou X; Gao X
    PLoS One; 2013; 8(6):e67634. PubMed ID: 23826330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer.
    Chen IH; Xue L; Hsu CC; Paez JS; Pan L; Andaluz H; Wendt MK; Iliuk AB; Zhu JK; Tao WA
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3175-3180. PubMed ID: 28270605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach.
    Beretov J; Wasinger VC; Millar EK; Schwartz P; Graham PH; Li Y
    PLoS One; 2015; 10(11):e0141876. PubMed ID: 26544852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context.
    Schaaij-Visser TB; de Wit M; Lam SW; Jiménez CR
    Biochim Biophys Acta; 2013 Nov; 1834(11):2242-58. PubMed ID: 23376433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretome proteomics reveals candidate non-invasive biomarkers of BRCA1 deficiency in breast cancer.
    Warmoes M; Lam SW; van der Groep P; Jaspers JE; Smolders YH; de Boer L; Pham TV; Piersma SR; Rottenberg S; Boven E; Jonkers J; van Diest PJ; Jimenez CR
    Oncotarget; 2016 Sep; 7(39):63537-63548. PubMed ID: 27566577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative phosphoproteomic analysis identifies novel functional pathways of tumor suppressor DLC1 in estrogen receptor positive breast cancer.
    Gökmen-Polar Y; True JD; Vieth E; Gu Y; Gu X; Qi GD; Mosley AL; Badve SS
    PLoS One; 2018; 13(10):e0204658. PubMed ID: 30278072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate early detection protein biomarkers for ER+/PR+ invasive ductal breast carcinoma identified using pre-clinical plasma from the WHI observational study.
    Buas MF; Rho JH; Chai X; Zhang Y; Lampe PD; Li CI
    Breast Cancer Res Treat; 2015 Sep; 153(2):445-54. PubMed ID: 26319120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples.
    Narumi R; Murakami T; Kuga T; Adachi J; Shiromizu T; Muraoka S; Kume H; Kodera Y; Matsumoto M; Nakayama K; Miyamoto Y; Ishitobi M; Inaji H; Kato K; Tomonaga T
    J Proteome Res; 2012 Nov; 11(11):5311-22. PubMed ID: 22985185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma.
    Lin YT; Chien KY; Wu CC; Chang WY; Chu LJ; Chen MC; Yeh CT; Yu JS
    J Proteomics; 2017 Mar; 157():40-51. PubMed ID: 28192239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentially novel candidate biomarkers for head and neck squamous cell carcinoma identified using an integrated cell line-based discovery strategy.
    Sepiashvili L; Hui A; Ignatchenko V; Shi W; Su S; Xu W; Huang SH; O'Sullivan B; Waldron J; Irish JC; Perez-Ordonez B; Liu FF; Kislinger T
    Mol Cell Proteomics; 2012 Nov; 11(11):1404-15. PubMed ID: 22918226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Features of CD44+/CD24-low phenotypic cell distribution in relation to predictive markers and molecular subtypes of invasive ductal carcinoma of the breast.
    Gudadze M; Kankava Q; Mariamidze A; Burkadze G
    Georgian Med News; 2014 Mar; (228):81-7. PubMed ID: 24743129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping.
    Rontogianni S; Synadaki E; Li B; Liefaard MC; Lips EH; Wesseling J; Wu W; Altelaar M
    Commun Biol; 2019; 2():325. PubMed ID: 31508500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multipronged quantitative proteomics reveals serum proteome alterations in breast cancer intrinsic subtypes.
    Gajbhiye A; Dabhi R; Taunk K; Jagadeeshaprasad MG; RoyChoudhury S; Mane A; Bayatigeri S; Chaudhury K; Santra MK; Rapole S
    J Proteomics; 2017 Jun; 163():1-13. PubMed ID: 28495502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation and quantification among a target set of phosphopeptides in human plasma by multiple reaction monitoring and SWATH-MS2 data-independent acquisition.
    Zawadzka AM; Schilling B; Held JM; Sahu AK; Cusack MP; Drake PM; Fisher SJ; Gibson BW
    Electrophoresis; 2014 Dec; 35(24):3487-97. PubMed ID: 24853916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of breast cancer tissues to identify biomarker candidates by gel-assisted digestion and label-free quantification methods using LC-MS/MS.
    Song MN; Moon PG; Lee JE; Na M; Kang W; Chae YS; Park JY; Park H; Baek MC
    Arch Pharm Res; 2012 Oct; 35(10):1839-47. PubMed ID: 23139137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteopontin up-regulates critical epithelial-mesenchymal transition transcription factors to induce an aggressive breast cancer phenotype.
    Li NY; Weber CE; Mi Z; Wai PY; Cuevas BD; Kuo PC
    J Am Coll Surg; 2013 Jul; 217(1):17-26; discussion 26. PubMed ID: 23619316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative tissue proteomic investigation of invasive ductal carcinoma of breast with luminal B HER2 positive and HER2 enriched subtypes towards potential diagnostic and therapeutic biomarkers.
    Pendharkar N; Gajbhiye A; Taunk K; RoyChoudhury S; Dhali S; Seal S; Mane A; Abhang S; Santra MK; Chaudhury K; Rapole S
    J Proteomics; 2016 Jan; 132():112-30. PubMed ID: 26642762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.