These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24505305)

  • 1. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO₂.
    Johnson MD; Moriarty VW; Carpenter RC
    PLoS One; 2014; 9(2):e87678. PubMed ID: 24505305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga.
    Johnson MD; Carpenter RC
    Biol Lett; 2018 Jul; 14(7):. PubMed ID: 29997188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification.
    Comeau S; Carpenter RC; Nojiri Y; Putnam HM; Sakai K; Edmunds PJ
    Proc Biol Sci; 2014 Sep; 281(1790):. PubMed ID: 25056628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate.
    Comeau S; Carpenter RC; Edmunds PJ
    Proc Biol Sci; 2013 Feb; 280(1753):20122374. PubMed ID: 23256193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga.
    Briggs AA; Carpenter RC
    Sci Rep; 2019 Mar; 9(1):3986. PubMed ID: 30850681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean acidification effects on in situ coral reef metabolism.
    Doo SS; Edmunds PJ; Carpenter RC
    Sci Rep; 2019 Aug; 9(1):12067. PubMed ID: 31427632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae.
    Ordoñez A; Doropoulos C; Diaz-Pulido G
    Biol Bull; 2014 Jun; 226(3):255-68. PubMed ID: 25070869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.
    Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P
    Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification.
    Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE
    Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits.
    Dufault AM; Cumbo VR; Fan TY; Edmunds PJ
    Proc Biol Sci; 2012 Aug; 279(1740):2951-8. PubMed ID: 22513858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa.
    Webster NS; Negri AP; Flores F; Humphrey C; Soo R; Botté ES; Vogel N; Uthicke S
    Environ Microbiol Rep; 2013 Apr; 5(2):243-51. PubMed ID: 23584968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Framework of barrier reefs threatened by ocean acidification.
    Comeau S; Lantz CA; Edmunds PJ; Carpenter RC
    Glob Chang Biol; 2016 Mar; 22(3):1225-34. PubMed ID: 26154126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification.
    O'Leary JK; Barry JP; Gabrielson PW; Rogers-Bennett L; Potts DC; Palumbi SR; Micheli F
    Sci Rep; 2017 Jul; 7(1):5774. PubMed ID: 28720836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).
    Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O
    J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples.
    Kato A; Hikami M; Kumagai NH; Suzuki A; Nojiri Y; Sakai K
    Mar Environ Res; 2014 Mar; 94():1-6. PubMed ID: 24239067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability.
    Cornwall CE; Comeau S; DeCarlo TM; Moore B; D'Alexis Q; McCulloch MT
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30089625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta).
    Gabrielson PW; Hughey JR; Diaz-Pulido G
    J Phycol; 2018 Aug; 54(4):429-434. PubMed ID: 29920669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.
    Vásquez-Elizondo RM; Enríquez S
    Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae.
    Page TM; McDougall C; Bar I; Diaz-Pulido G
    BMC Genomics; 2022 Oct; 23(1):729. PubMed ID: 36303112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influences of diurnal variability and ocean acidification on the bioerosion rates of two reef-dwelling Caribbean sponges.
    Morris J; Enochs I; Webb A; de Bakker D; Soderberg N; Kolodziej G; Manzello D
    Glob Chang Biol; 2022 Dec; 28(23):7126-7138. PubMed ID: 36129389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.