These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24505339)
1. Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration. Mäkelä MR; Sietiö OM; de Vries RP; Timonen S; Hildén K PLoS One; 2014; 9(2):e87959. PubMed ID: 24505339 [TBL] [Abstract][Full Text] [Related]
2. Oxalate decarboxylase of the white-rot fungus Dichomitus squalens demonstrates a novel enzyme primary structure and non-induced expression on wood and in liquid cultures. Mäkelä MR; Hildén K; Hatakka A; Lundell TK Microbiology (Reading); 2009 Aug; 155(Pt 8):2726-2738. PubMed ID: 19389757 [TBL] [Abstract][Full Text] [Related]
3. Induction of Genes Encoding Plant Cell Wall-Degrading Carbohydrate-Active Enzymes by Lignocellulose-Derived Monosaccharides and Cellobiose in the White-Rot Fungus Dichomitus squalens. Casado López S; Peng M; Issak TY; Daly P; de Vries RP; Mäkelä MR Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572208 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Rytioja J; Hildén K; Hatakka A; Mäkelä MR Fungal Genet Biol; 2014 Nov; 72():91-98. PubMed ID: 24394946 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome-based analysis of the saprophytic fungus Abortiporus biennis - response to oxalic acid. Grąz M; Jarosz-Wilkołazka A; Janusz G; Mazur A; Wielbo J; Koper P; Żebracki K; Kubik-Komar A Microbiol Res; 2017 Jun; 199():79-88. PubMed ID: 28454712 [TBL] [Abstract][Full Text] [Related]
6. Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus Daly P; Peng M; Di Falco M; Lipzen A; Wang M; Ng V; Grigoriev IV; Tsang A; Mäkelä MR; de Vries RP Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31585998 [TBL] [Abstract][Full Text] [Related]
7. The White-Rot Basidiomycete Kowalczyk JE; Peng M; Pawlowski M; Lipzen A; Ng V; Singan V; Wang M; Grigoriev IV; Mäkelä MR Front Bioeng Biotechnol; 2019; 7():229. PubMed ID: 31616664 [TBL] [Abstract][Full Text] [Related]
8. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Rytioja J; Hildén K; Di Falco M; Zhou M; Aguilar-Pontes MV; Sietiö OM; Tsang A; de Vries RP; Mäkelä MR Environ Microbiol; 2017 Mar; 19(3):1237-1250. PubMed ID: 28028889 [TBL] [Abstract][Full Text] [Related]
9. Mixtures of aromatic compounds induce ligninolytic gene expression in the wood-rotting fungus Dichomitus squalens. Daly P; Peng M; Casado López S; Lipzen A; Ng V; Singan VR; Wang M; Grigoriev IV; de Vries RP; Mäkelä MR J Biotechnol; 2020 Jan; 308():35-39. PubMed ID: 31778732 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of chestnut shell and lignin-modifying enzymes production by the white-rot fungi Dichomitus squalens, Phlebia radiata. Dong YC; Dai YN; Xu TY; Cai J; Chen QH Bioprocess Biosyst Eng; 2014 May; 37(5):755-64. PubMed ID: 24013443 [TBL] [Abstract][Full Text] [Related]
11. Dichomitus squalens partially tailors its molecular responses to the composition of solid wood. Daly P; López SC; Peng M; Lancefield CS; Purvine SO; Kim YM; Zink EM; Dohnalkova A; Singan VR; Lipzen A; Dilworth D; Wang M; Ng V; Robinson E; Orr G; Baker SE; Bruijnincx PCA; Hildén KS; Grigoriev IV; Mäkelä MR; de Vries RP Environ Microbiol; 2018 Nov; 20(11):4141-4156. PubMed ID: 30246402 [TBL] [Abstract][Full Text] [Related]
12. Application of CRISPR/Cas9 Tools for Genome Editing in the White-Rot Fungus Kowalczyk JE; Saha S; Mäkelä MR Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680159 [No Abstract] [Full Text] [Related]
13. Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens(1). Li D; Li N; Ma B; Mayfield MB; Gold MH Biochim Biophys Acta; 1999 Oct; 1434(2):356-64. PubMed ID: 10525153 [TBL] [Abstract][Full Text] [Related]
14. Oxalate efflux transporter from the brown rot fungus Fomitopsis palustris. Watanabe T; Shitan N; Suzuki S; Umezawa T; Shimada M; Yazaki K; Hattori T Appl Environ Microbiol; 2010 Dec; 76(23):7683-90. PubMed ID: 20889782 [TBL] [Abstract][Full Text] [Related]
15. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe Shah F; Mali T; Lundell TK Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983 [TBL] [Abstract][Full Text] [Related]
16. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens. Rytioja J; Hildén K; Mäkinen S; Vehmaanperä J; Hatakka A; Mäkelä MR PLoS One; 2015; 10(12):e0145166. PubMed ID: 26660105 [TBL] [Abstract][Full Text] [Related]
17. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Périé FH; Gold MH Appl Environ Microbiol; 1991 Aug; 57(8):2240-5. PubMed ID: 1768094 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of two manganese peroxidase isozymes from the white-rot basidiomycete Dichomitus squalens. Périé FH; Sheng D; Gold MH Biochim Biophys Acta; 1996 Oct; 1297(2):139-48. PubMed ID: 8917615 [TBL] [Abstract][Full Text] [Related]
19. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi. Presley GN; Zhang J; Schilling JS Fungal Genet Biol; 2018 Mar; 112():64-70. PubMed ID: 27543342 [TBL] [Abstract][Full Text] [Related]
20. The synergistic effect on production of lignin-modifying enzymes through submerged co-cultivation of Phlebia radiata, Dichomitus squalens and Ceriporiopsis subvermispora using agricultural residues. Dong YC; Wang W; Hu ZC; Fu ML; Chen QH Bioprocess Biosyst Eng; 2012 Jun; 35(5):751-60. PubMed ID: 22116528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]