These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24505742)

  • 1. 3D tongue motion from tagged and cine MR images.
    Xing F; Woo J; Murano EZ; Lee J; Stone M; Prince JL
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):41-8. PubMed ID: 24505742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incompressible deformation estimation algorithm (IDEA) from tagged MR images.
    Liu X; Abd-Elmoniem KZ; Stone M; Murano EZ; Zhuo J; Gullapalli RP; Prince JL
    IEEE Trans Med Imaging; 2012 Feb; 31(2):326-40. PubMed ID: 21937342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring tongue motion from tagged cine-MRI using harmonic phase (HARP) processing.
    Parthasarathy V; Prince JL; Stone M; Murano EZ; Nessaiver M
    J Acoust Soc Am; 2007 Jan; 121(1):491-504. PubMed ID: 17297803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images.
    Xing F; Woo J; Lee J; Murano EZ; Stone M; Prince JL
    J Speech Lang Hear Res; 2016 Jun; 59(3):468-79. PubMed ID: 27295428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-point motion tracking in the tongue from cine MRI and tagged MRI.
    Woo J; Stone M; Suo Y; Murano EZ; Prince JL
    J Speech Lang Hear Res; 2014 Apr; 57(2):S626-36. PubMed ID: 24686470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of An Unbiased Spatio-Temporal Atlas of the Tongue During Speech.
    Woo J; Xing F; Lee J; Stone M; Prince JL
    Inf Process Med Imaging; 2015; 24():723-32. PubMed ID: 26221715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.
    Lee J; Woo J; Xing F; Murano EZ; Stone M; Prince JL
    Comput Med Imaging Graph; 2014 Dec; 38(8):714-24. PubMed ID: 25155697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incompressible cardiac motion estimation of the left ventricle using tagged MR images.
    Liu X; Abd-Elmoniem KZ; Prince JL
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):331-8. PubMed ID: 20426129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cine viability magnetic resonance imaging of the heart without increased scan time.
    Hassanein AS; Khalifa AM; Ibrahim el-SH
    Magn Reson Imaging; 2016 Feb; 34(2):183-90. PubMed ID: 26528793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac motion estimation by optimizing transmural homogeneity of the myofiber strain and its validation with multimodal sequences.
    Zhang Z; Sahn DJ; Song X
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):493-500. PubMed ID: 24505703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Vector Incompressible Registration Algorithm for Motion Estimation From Tagged Magnetic Resonance Images.
    Xing F; Woo J; Gomez AD; Pham DL; Bayly PV; Stone M; Prince JL
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2116-2128. PubMed ID: 28692967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional cardiac cine imaging using the kat ARC acceleration: Initial experience in clinical adult patients at 3T.
    Okuda S; Yamada Y; Tanimoto A; Fujita J; Sano M; Fukuda K; Kuribayashi S; Jinzaki M; Nozaki A; Lai P
    Magn Reson Imaging; 2015 Sep; 33(7):911-7. PubMed ID: 25936683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformable registration of high-resolution and cine MR tongue images.
    Woo J; Stone M; Prince JL
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):556-63. PubMed ID: 22003662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining functional units of tongue motion via graph-regularized sparse non-negative matrix factorization.
    Woo J; Xing F; Lee J; Stone M; Prince JL
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):146-53. PubMed ID: 25485373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanically-constrained 4D estimation of myocardial motion.
    Sundar H; Davatzikos C; Biros G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):257-65. PubMed ID: 20426120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial motion estimation in tagged MR sequences by using alphaMI-based non rigid registration.
    Oubel E; Tobon-Gomez C; Hero AO; Frangi AF
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):271-8. PubMed ID: 16685969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistent estimation of cardiac motions by 4D image registration.
    Shen D; Sundar H; Xue Z; Fan Y; Litt H
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):902-10. PubMed ID: 16686046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial strains from 3D displacement encoded magnetic resonance imaging.
    Kindberg K; Haraldsson H; Sigfridsson A; Engvall J; Ingels NB; Ebbers T; Karlsson M
    BMC Med Imaging; 2012 Apr; 12():9. PubMed ID: 22533791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Registration using sparse free-form deformations.
    Shi W; Zhuang X; Pizarro L; Bai W; Wang H; Tung KP; Edwards P; Rueckert D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):659-66. PubMed ID: 23286105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frame-rate full-vocal-tract 3D dynamic speech imaging.
    Fu M; Barlaz MS; Holtrop JL; Perry JL; Kuehn DP; Shosted RK; Liang ZP; Sutton BP
    Magn Reson Med; 2017 Apr; 77(4):1619-1629. PubMed ID: 27099178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.