These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24505775)

  • 1. Towards a better understanding of pelvic system disorders using numerical simulation.
    Lecomte-Grosbras P; Diallo MN; Witz JF; Marchal D; Dequidt J; Cotin S; Cosson M; Duriez C; Brieu M
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):307-14. PubMed ID: 24505775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D finite element modeling of pelvic organ prolapse.
    Yang Z; Hayes J; Krishnamurty S; Grosse IR
    Comput Methods Biomech Biomed Engin; 2016 Dec; 19(16):1772-1784. PubMed ID: 27174200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pregnancy impact on uterosacral ligament and pelvic muscles using a 3D numerical and finite element model: preliminary results.
    Jean Dit Gautier E; Mayeur O; Lepage J; Brieu M; Cosson M; Rubod C
    Int Urogynecol J; 2018 Mar; 29(3):425-430. PubMed ID: 29188325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the passive and active material parameters of the pubovisceralis muscle using an inverse numerical method.
    Silva MET; Parente MPL; Brandão S; Mascarenhas T; Natal Jorge RM
    J Biomech; 2018 Apr; 71():100-110. PubMed ID: 29454543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiments and finite element modelling for the study of prolapse in the pelvic floor system.
    Venugopala Rao G; Rubod C; Brieu M; Bhatnagar N; Cosson M
    Comput Methods Biomech Biomed Engin; 2010 Jun; 13(3):349-57. PubMed ID: 20099169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Female patient-specific finite element modeling of pelvic organ prolapse (POP).
    Chen ZW; Joli P; Feng ZQ; Rahim M; Pirró N; Bellemare ME
    J Biomech; 2015 Jan; 48(2):238-45. PubMed ID: 25529137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results.
    Lepage J; Jayyosi C; Lecomte-Grosbras P; Brieu M; Duriez C; Cosson M; Rubod C
    Int Urogynecol J; 2015 Apr; 26(4):497-504. PubMed ID: 25227746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of pelvic organ prolapse.
    Ren S; Xie B; Wang J; Rong Q
    Sci China Life Sci; 2015 Feb; 58(2):218-20. PubMed ID: 25563979
    [No Abstract]   [Full Text] [Related]  

  • 9. Simulation of the mobility of the pelvic system: influence of fascia between organs.
    Diallo MN; Mayeur O; Lecomte-Grosbras P; Patrouix L; Witz JF; Lesaffre F; Rubod C; Cosson M; Brieu M
    Comput Methods Biomech Biomed Engin; 2022 Aug; 25(10):1073-1087. PubMed ID: 34783611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging of the pelvic floor: from clinical to biomechanical imaging.
    Brandão S; Da Roza T; Parente M; Ramos I; Mascarenhas T; Natal Jorge RM
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1324-32. PubMed ID: 24030164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional modeling of the pelvic floor support systems of subjects with and without pelvic organ prolapse.
    Ren S; Xie B; Wang J; Rong Q
    Biomed Res Int; 2015; 2015():845985. PubMed ID: 25710033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.
    Watson PJ; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2015 Jan; 229(1):9-19. PubMed ID: 25542612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring morphological parameters of the pelvic floor for finite element modelling purposes.
    Janda S; van der Helm FC; de Blok SB
    J Biomech; 2003 Jun; 36(6):749-57. PubMed ID: 12742442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biomechanical modeling of pelvic organ mobility: towards personalized medicine].
    Cosson M; Rubod C; Vallet A; Witz JF; Brieu M
    Bull Acad Natl Med; 2011 Nov; 195(8):1869-83; discussion 1883. PubMed ID: 22844748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model.
    Cosson M; Rubod C; Vallet A; Witz JF; Dubois P; Brieu M
    Int Urogynecol J; 2013 Jan; 24(1):105-12. PubMed ID: 22707008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biofidelic computational model of the female pelvic system to understand effect of bladder fill and progressive vaginal tissue stiffening due to prolapse on anterior vaginal wall.
    Chanda A; Unnikrishnan V; Richter HE; Lockhart ME
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26732347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preoperative functional explorations of genital prolapse (urodynamics, dynamic MRI)].
    Pizzoferrato AC; Fritel X
    Gynecol Obstet Fertil Senol; 2018; 46(7-8):593-597. PubMed ID: 29997048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Pelvic Ramus Fracture on the Stability of Fixed Pelvic Complex Fracture.
    Lei J; Zhang Y; Wu G; Wang Z; Cai X
    Comput Math Methods Med; 2015; 2015():790575. PubMed ID: 26495033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical model of the pelvic cavity: first steps.
    Rubod C; Boukerrou M; Rousseau J; Viard R; Brieu M; Dubois P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():968-71. PubMed ID: 17945611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D simulation of pelvic system numerical simulation for a better understanding of the contribution of the uterine ligaments.
    Rubod C; Lecomte-Grosbras P; Brieu M; Giraudet G; Betrouni N; Cosson M
    Int Urogynecol J; 2013 Aug; ():. PubMed ID: 23958831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.