These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2450588)

  • 1. Macromolecular crowding extends the range of conditions under which DNA polymerase is functional.
    Zimmerman SB; Trach SO
    Biochim Biophys Acta; 1988 Mar; 949(3):297-304. PubMed ID: 2450588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect.
    Zimmerman SB; Harrison B
    Proc Natl Acad Sci U S A; 1987 Apr; 84(7):1871-5. PubMed ID: 3550799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerization/excision kinetics of Escherichia coli DNA polymerase I. Stability in kinetic behaviour and variations of the rate constants with temperature and pH.
    Saghi M; Dorizzi M
    Eur J Biochem; 1982 Mar; 123(1):191-9. PubMed ID: 7040074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex.
    Srivastava A; Singh K; Modak MJ
    Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA polymerases of Leishmania mexicana.
    Nolan LL; Rivera JH
    FEMS Microbiol Lett; 1992 Aug; 74(1):71-5. PubMed ID: 1516809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic buffering exerted by macromolecular crowding on DNA-DNA interactions: origin and physiological significance.
    Goobes R; Kahana N; Cohen O; Minsky A
    Biochemistry; 2003 Mar; 42(8):2431-40. PubMed ID: 12600210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of Plasmodium falciparum purine nucleoside phosphorylase in macromolecular crowded environment.
    Suthar MK; Doharey PK; Verma A; Saxena JK
    Int J Biol Macromol; 2013 Nov; 62():657-62. PubMed ID: 24095713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibition of mitochondrial DNA polymerase gamma from animal cells by intercalating drugs.
    Tarrago-Litvak L; Viratelle O; Darriet D; Dalibart R; Graves PV; Litvak S
    Nucleic Acids Res; 1978 Jun; 5(6):2197-210. PubMed ID: 673850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action of DNA polymerase I of Escherichia coli with DNA-RNA hybrids as templates.
    Karkas JD; Stavrianopoulos JG; Chargaff E
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):398-402. PubMed ID: 4621833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of template inactivators on the binding of DNA polymerase to DNA.
    Müller WE; Obermeier J; Totsuka A; Zahn RK
    Nucleic Acids Res; 1974 Jan; 1(1):63-74. PubMed ID: 10793660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of compact spermidine nucleoids from Escherichia coli under crowded conditions: implications for in vivo nucleoid structure.
    Murphy LD; Zimmerman SB
    J Struct Biol; 1997 Aug; 119(3):336-46. PubMed ID: 9245771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent allosterism by avian myeloblastosis virus reverse transcriptase and E. coli DNA polymerase I.
    Darling TL; Reid TW
    Nucleic Acids Res; 1979 Mar; 6(3):1189-201. PubMed ID: 86985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-dependent variation in the relative fidelity of DNA polymerase I of Escherichia coli in the presence of Mg2+ versus Mn2+.
    Hillebrand GG; Beattie KL
    Nucleic Acids Res; 1984 Apr; 12(7):3173-83. PubMed ID: 6371712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA synthesis by a membrane-DNA complex from rate liver mitochondria.
    Shearman CW; Kalf GF
    Biochem Biophys Res Commun; 1975 Apr; 63(3):712-21. PubMed ID: 236747
    [No Abstract]   [Full Text] [Related]  

  • 17. Escherichia coli β-clamp slows down DNA polymerase I dependent nick translation while accelerating ligation.
    Bhardwaj A; Ghose D; Thakur KG; Dutta D
    PLoS One; 2018; 13(6):e0199559. PubMed ID: 29924849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uracil in deoxyribonucleotide polymers reduces their template-primer activity for E. coli DNA polymerase I.
    Vilpo JA; Ridell J
    Nucleic Acids Res; 1983 Jun; 11(11):3753-65. PubMed ID: 6344014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
    Zhao G; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.