These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 24506038)
1. Genetic evaluation of recombinant inbred lines of rice (Oryza sativa L.) for grain zinc concentrations, yield related traits and identification of associated SSR markers. Bekele BD; Naveen GK; Rakhi S; Shashidhar HE Pak J Biol Sci; 2013 Dec; 16(23):1714-21. PubMed ID: 24506038 [TBL] [Abstract][Full Text] [Related]
2. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.). Yadav SK; Pandey P; Kumar B; Suresh BG Pak J Biol Sci; 2011 May; 14(9):540-5. PubMed ID: 22032083 [TBL] [Abstract][Full Text] [Related]
3. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. Kappara S; Neelamraju S; Ramanan R Plant Sci; 2018 Nov; 276():208-219. PubMed ID: 30348320 [TBL] [Abstract][Full Text] [Related]
4. Genomic marker assisted identification of genetic loci and genes associated with variation of grain zinc concentration in rice. Kumari K; Kumar P; Sharma VK; Singh SK J Genet; 2019 Dec; 98():. PubMed ID: 31819017 [TBL] [Abstract][Full Text] [Related]
5. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index. Dao A; Sanou J; V S Traore E; Gracen V; Danquah EY Pak J Biol Sci; 2017; 20(3):132-139. PubMed ID: 29023004 [TBL] [Abstract][Full Text] [Related]
6. Identification of Promising RILs for High Grain Zinc Through Genotype × Environment Analysis and Stable Grain Zinc QTL Using SSRs and SNPs in Rice ( Suman K; Neeraja CN; Madhubabu P; Rathod S; Bej S; Jadhav KP; Kumar JA; Chaitanya U; Pawar SC; Rani SH; Subbarao LV; Voleti SR Front Plant Sci; 2021; 12():587482. PubMed ID: 33679823 [TBL] [Abstract][Full Text] [Related]
7. Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Li X; Yan W; Agrama H; Jia L; Shen X; Jackson A; Moldenhauer K; Yeater K; McClung A; Wu D Planta; 2011 Aug; 234(2):347-61. PubMed ID: 21479810 [TBL] [Abstract][Full Text] [Related]
8. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Suh JP; Jeung JU; Lee JI; Choi YH; Yea JD; Virk PS; Mackill DJ; Jena KK Theor Appl Genet; 2010 Mar; 120(5):985-95. PubMed ID: 20012263 [TBL] [Abstract][Full Text] [Related]
9. NOG1 increases grain production in rice. Huo X; Wu S; Zhu Z; Liu F; Fu Y; Cai H; Sun X; Gu P; Xie D; Tan L; Sun C Nat Commun; 2017 Nov; 8(1):1497. PubMed ID: 29133783 [TBL] [Abstract][Full Text] [Related]
10. Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice. Tabkhkar N; Rabiei B; Samizadeh Lahiji H; Hosseini Chaleshtori M Biochem Genet; 2018 Aug; 56(4):356-374. PubMed ID: 29478138 [TBL] [Abstract][Full Text] [Related]
11. Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Zou GH; Mei HW; Liu HY; Liu GL; Hu SP; Yu XQ; Li MS; Wu JH; Luo LJ Theor Appl Genet; 2005 Dec; 112(1):106-13. PubMed ID: 16231161 [TBL] [Abstract][Full Text] [Related]
12. Genetic Diversity and Phenotypic Variation in an Introgression Line Population Derived from an Interspecific Cross between Oryza glaberrima and Oryza sativa. Chen C; He W; Nassirou TY; Zhou W; Yin Y; Dong X; Rao Q; Shi H; Zhao W; Efisue A; Jin D PLoS One; 2016; 11(9):e0161746. PubMed ID: 27603678 [TBL] [Abstract][Full Text] [Related]
13. Genotype × environment interactions for grain iron and zinc content in rice. Naik SM; Raman AK; Nagamallika M; Venkateshwarlu C; Singh SP; Kumar S; Singh SK; Tomizuddin Ahmed ; Das SP; Prasad K; Izhar T; Mandal NP; Singh NK; Yadav S; Reinke R; Swamy BPM; Virk P; Kumar A J Sci Food Agric; 2020 Aug; 100(11):4150-4164. PubMed ID: 32421211 [TBL] [Abstract][Full Text] [Related]
14. Role of qGZn9a in controlling grain zinc concentration in rice, Oryza sativa L. Ogasawara M; Miyazaki N; Monden G; Taniko K; Lim S; Iwata M; Ishii T; Ma JF; Ishikawa R Theor Appl Genet; 2021 Sep; 134(9):3013-3022. PubMed ID: 34110432 [TBL] [Abstract][Full Text] [Related]
15. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Tian F; Li DJ; Fu Q; Zhu ZF; Fu YC; Wang XK; Sun CQ Theor Appl Genet; 2006 Feb; 112(3):570-80. PubMed ID: 16331476 [TBL] [Abstract][Full Text] [Related]
16. Relationships of rice yield and quality based on genotype by trait (GT) biplot. Sharifi P; Ebadi AA An Acad Bras Cienc; 2018; 90(1):343-356. PubMed ID: 29641764 [TBL] [Abstract][Full Text] [Related]
17. Discovery and mapping of genomic regions governing economically important traits of Basmati rice. Vemireddy LR; Noor S; Satyavathi VV; Srividhya A; Kaliappan A; Parimala S; Bharathi PM; Deborah DA; Rao KV; Shobharani N; Siddiq EA; Nagaraju J BMC Plant Biol; 2015 Aug; 15():207. PubMed ID: 26293787 [TBL] [Abstract][Full Text] [Related]
18. Examining Two Sets of Introgression Lines in Rice (Oryza sativa L.) Reveals Favorable Alleles that Improve Grain Zn and Fe Concentrations. Xu Q; Zheng TQ; Hu X; Cheng LR; Xu JL; Shi YM; Li ZK PLoS One; 2015; 10(7):e0131846. PubMed ID: 26161553 [TBL] [Abstract][Full Text] [Related]
19. Characterization of QTLs for harvest index and source-sink characters in a DH population of rice (Oryza sativa L.). Mao BB; Cai WJ; Zhang ZH; Hu ZL; Li P; Zhu LH; Zhu YG Yi Chuan Xue Bao; 2003 Dec; 30(12):1118-26. PubMed ID: 14986429 [TBL] [Abstract][Full Text] [Related]
20. Identification of genomic region(s) responsible for high iron and zinc content in rice. Dixit S; Singh UM; Abbai R; Ram T; Singh VK; Paul A; Virk PS; Kumar A Sci Rep; 2019 May; 9(1):8136. PubMed ID: 31148549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]