BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24506189)

  • 1. Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.
    Xiao H; Peters FB; Yang PY; Reed S; Chittuluru JR; Schultz PG
    ACS Chem Biol; 2014 May; 9(5):1092-6. PubMed ID: 24506189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum.
    Wang YS; Fang X; Wallace AL; Wu B; Liu WR
    J Am Chem Soc; 2012 Feb; 134(6):2950-3. PubMed ID: 22289053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semi-Rationally Engineered Bacterial Pyrrolysyl-tRNA Synthetase Genetically Encodes Phenyl Azide Chemistry.
    Fladischer P; Weingartner A; Blamauer J; Darnhofer B; Birner-Gruenberger R; Kardashliev T; Ruff AJ; Schwaneberg U; Wiltschi B
    Biotechnol J; 2019 Mar; 14(3):e1800125. PubMed ID: 29862654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs.
    Willis JCW; Chin JW
    Nat Chem; 2018 Aug; 10(8):831-837. PubMed ID: 29807989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.
    Nozawa K; O'Donoghue P; Gundllapalli S; Araiso Y; Ishitani R; Umehara T; Söll D; Nureki O
    Nature; 2009 Feb; 457(7233):1163-7. PubMed ID: 19118381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant.
    Wang YS; Fang X; Chen HY; Wu B; Wang ZU; Hilty C; Liu WR
    ACS Chem Biol; 2013 Feb; 8(2):405-15. PubMed ID: 23138887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli.
    Chatterjee A; Xiao H; Schultz PG
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14841-6. PubMed ID: 22927411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl) pairs in the Escherichia coli BL21(DE3) cell strain.
    Odoi KA; Huang Y; Rezenom YH; Liu WR
    PLoS One; 2013; 8(3):e57035. PubMed ID: 23520461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase.
    Yanagisawa T; Kuratani M; Seki E; Hino N; Sakamoto K; Yokoyama S
    Cell Chem Biol; 2019 Jul; 26(7):936-949.e13. PubMed ID: 31031143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion.
    Ding W; Zhao H; Chen Y; Zhang B; Yang Y; Zang J; Wu J; Lin S
    Nat Commun; 2020 Jun; 11(1):3154. PubMed ID: 32572025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Evolved Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetase/tRNA Pair Is Highly Active and Orthogonal in Mammalian Cells.
    Beránek V; Willis JCW; Chin JW
    Biochemistry; 2019 Feb; 58(5):387-390. PubMed ID: 30260626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-Specific Incorporation of a Dithiolane Containing Amino Acid into Proteins.
    Koh M; Cho HY; Yu C; Choi S; Lee KB; Schultz PG
    Bioconjug Chem; 2019 Aug; 30(8):2102-2105. PubMed ID: 31319026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Incorporation of ε-N-2-Hydroxyisobutyryl-lysine into Recombinant Histones.
    Xiao H; Xuan W; Shao S; Liu T; Schultz PG
    ACS Chem Biol; 2015 Jul; 10(7):1599-603. PubMed ID: 25909834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.