BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24506191)

  • 1. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold.
    Fujita T; Tokunaga T; Zhang L; Li D; Chen L; Arai S; Yamamoto Y; Hirata A; Tanaka N; Ding Y; Chen M
    Nano Lett; 2014 Mar; 14(3):1172-7. PubMed ID: 24506191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ag surface segregation in nanoporous Au catalysts during CO oxidation.
    Pia G; Sogne E; Falqui A; Delogu F
    Sci Rep; 2018 Oct; 8(1):15208. PubMed ID: 30315259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic origins of the high catalytic activity of nanoporous gold.
    Fujita T; Guan P; McKenna K; Lang X; Hirata A; Zhang L; Tokunaga T; Arai S; Yamamoto Y; Tanaka N; Ishikawa Y; Asao N; Yamamoto Y; Erlebacher J; Chen M
    Nat Mater; 2012 Sep; 11(9):775-80. PubMed ID: 22886067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning Surface Structure of 3D Nanoporous Gold by Surfactant-Free Electrochemical Potential Cycling.
    Wang Z; Ning S; Liu P; Ding Y; Hirata A; Fujita T; Chen M
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28910497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual Silver Remarkably Enhances Electrocatalytic Activity and Durability of Dealloyed Gold Nanosponge Particles.
    Li GG; Lin Y; Wang H
    Nano Lett; 2016 Nov; 16(11):7248-7253. PubMed ID: 27690465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production.
    Song R; Han J; Okugawa M; Belosludov R; Wada T; Jiang J; Wei D; Kudo A; Tian Y; Chen M; Kato H
    Nat Commun; 2022 Sep; 13(1):5157. PubMed ID: 36055985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Performance of Nanoporous Metal Skeleton Catalysts for Molecular Transformations.
    Jin T; Terada M; Bao M; Yamamoto Y
    ChemSusChem; 2019 Jul; 12(13):2936-2954. PubMed ID: 30811897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage.
    Qiu HJ; Xu HT; Liu L; Wang Y
    Nanoscale; 2015 Jan; 7(2):386-400. PubMed ID: 25419899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis.
    Xi W; Wang K; Shen Y; Ge M; Deng Z; Zhao Y; Cao Q; Ding Y; Hu G; Luo J
    Nat Commun; 2020 Apr; 11(1):1919. PubMed ID: 32317638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Facet Engineering in Nanoporous Gold for Low-Loading Catalysts in Aluminum-Air Batteries.
    Wang M; Meng AC; Fu J; Foucher AC; Serra-Maia R; Stach EA; Detsi E; Pikul JH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13097-13105. PubMed ID: 33715346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.
    Wang Z; Liu P; Han J; Cheng C; Ning S; Hirata A; Fujita T; Chen M
    Nat Commun; 2017 Oct; 8(1):1066. PubMed ID: 29057916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-activated surface dynamics in gold catalysts under reaction environments.
    Kamiuchi N; Sun K; Aso R; Tane M; Tamaoka T; Yoshida H; Takeda S
    Nat Commun; 2018 May; 9(1):2060. PubMed ID: 29802253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: highly efficient synthesis of formamides.
    Tanaka S; Minato T; Ito E; Hara M; Kim Y; Yamamoto Y; Asao N
    Chemistry; 2013 Sep; 19(36):11832-6. PubMed ID: 23946236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
    Baker TA; Liu X; Friend CM
    Phys Chem Chem Phys; 2011 Jan; 13(1):34-46. PubMed ID: 21103516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microstructural refinement and performance improvement of a nanoporous Ag/CeO
    Ma C; Wen Y; He G; Wang L; Gao L; Sun Z
    Nanotechnology; 2021 Feb; ():. PubMed ID: 33578404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing Under-Coordinated Surface Atoms on 3D Nanoporous Gold Catalysts.
    Liu P; Guan P; Hirata A; Zhang L; Chen L; Wen Y; Ding Y; Fujita T; Erlebacher J; Chen M
    Adv Mater; 2016 Mar; 28(9):1753-9. PubMed ID: 26676880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Detachment and Subsurface Densification of Dealloyed Nanoporous Thin Films.
    Henkelmann G; Waldow D; Liu M; Lührs L; Li Y; Weissmüller J
    Nano Lett; 2022 Aug; 22(16):6787-6793. PubMed ID: 35952308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.