BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24506493)

  • 1. The large pools of metabolites involved in intercellular metabolite shuttles in C4 photosynthesis provide enormous flexibility and robustness in a fluctuating light environment.
    Stitt M; Zhu XG
    Plant Cell Environ; 2014 Sep; 37(9):1985-8. PubMed ID: 24506493
    [No Abstract]   [Full Text] [Related]  

  • 2. The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis.
    Ubierna N; Sun W; Kramer DM; Cousins AB
    Plant Cell Environ; 2013 Feb; 36(2):365-81. PubMed ID: 22812384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elements required for an efficient NADP-malic enzyme type C4 photosynthesis.
    Wang Y; Long SP; Zhu XG
    Plant Physiol; 2014 Apr; 164(4):2231-46. PubMed ID: 24521879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state models of photosynthesis.
    von Caemmerer S
    Plant Cell Environ; 2013 Sep; 36(9):1617-30. PubMed ID: 23496792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?
    Sage RF; McKown AD
    J Exp Bot; 2006; 57(2):303-17. PubMed ID: 16364950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism.
    Sun W; Ubierna N; Ma JY; Cousins AB
    Plant Cell Environ; 2012 May; 35(5):982-93. PubMed ID: 22082455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and carbon assimilation in potato plants as affected by light fluctuations.
    Cao W; Tibbitts TW
    HortScience; 1993 Jul; 28(7):748. PubMed ID: 11537625
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of elevated carbon dioxide concentration on carbon assimilation under fluctuating light.
    Holišová P; Zitová M; Klem K; Urban O
    J Environ Qual; 2012; 41(6):1931-8. PubMed ID: 23128750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C4 photosynthesis.
    Kellogg EA
    Curr Biol; 2013 Jul; 23(14):R594-9. PubMed ID: 23885869
    [No Abstract]   [Full Text] [Related]  

  • 10. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation.
    Jakob T; Wagner H; Stehfest K; Wilhelm C
    J Exp Bot; 2007; 58(8):2101-12. PubMed ID: 17483116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide in the intercellular spaces of leaves during photosynthesis.
    HEATH OV
    Nature; 1949 Nov; 164(4176):822. PubMed ID: 15407524
    [No Abstract]   [Full Text] [Related]  

  • 12. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.
    Zhu XG; Ort DR; Whitmarsh J; Long SP
    J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches.
    Warren CR; Dreyer E
    J Exp Bot; 2006; 57(12):3057-67. PubMed ID: 16882645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.
    Priault P; Fresneau C; Noctor G; De Paepe R; Cornic G; Streb P
    J Exp Bot; 2006; 57(9):2075-85. PubMed ID: 16714313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species.
    Heskel MA; Anderson OR; Atkin OK; Turnbull MH; Griffin KL
    Am J Bot; 2012 Oct; 99(10):1702-14. PubMed ID: 22984095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological consequences of height-related morphological variation in Sequoia sempervirens foliage.
    Mullin LP; Sillett SC; Koch GW; Tu KP; Antoine ME
    Tree Physiol; 2009 Aug; 29(8):999-1010. PubMed ID: 19483187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (12)C/(13)C fractionations in plant primary metabolism.
    Tcherkez G; Mahé A; Hodges M
    Trends Plant Sci; 2011 Sep; 16(9):499-506. PubMed ID: 21705262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength specificity of growth, photosynthesis, and hydrocarbon production in the oil-producing green alga Botryococcus braunii.
    Baba M; Kikuta F; Suzuki I; Watanabe MM; Shiraiwa Y
    Bioresour Technol; 2012 Apr; 109():266-70. PubMed ID: 21683581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.
    Kromdijk J; Ubierna N; Cousins AB; Griffiths H
    J Exp Bot; 2014 Jul; 65(13):3443-57. PubMed ID: 24755278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of monochromatic illumination on lipid accumulation of Nannochloropsis gaditana under continuous cultivation.
    Kim CW; Sung MG; Nam K; Moon M; Kwon JH; Yang JW
    Bioresour Technol; 2014 May; 159():30-5. PubMed ID: 24632438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.