BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24506494)

  • 21. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries.
    Feng X; Yang J; Bie Y; Wang J; Nuli Y; Lu W
    Nanoscale; 2014 Nov; 6(21):12532-9. PubMed ID: 25177830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode.
    Zhou X; Yin YX; Cao AM; Wan LJ; Guo YG
    ACS Appl Mater Interfaces; 2012 May; 4(5):2824-8. PubMed ID: 22563769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries.
    Cao X; Shi Y; Shi W; Rui X; Yan Q; Kong J; Zhang H
    Small; 2013 Oct; 9(20):3433-8. PubMed ID: 23637090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles.
    Westover AS; Freudiger D; Gani ZS; Share K; Oakes L; Carter RE; Pint CL
    Nanoscale; 2015 Jan; 7(1):98-103. PubMed ID: 25407803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Temperature Magnesiothermic Reduction Enables HF-Free Synthesis of Porous Silicon with Enhanced Performance as Lithium-Ion Battery Anode.
    Zuo X; Yang Q; He Y; Cheng YJ; Yin S; Zhu J; Müller-Buschbaum P; Xia Y
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries.
    Wang HE; Jin J; Cai Y; Xu JM; Chen DS; Zheng XF; Deng Z; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 417():144-51. PubMed ID: 24407670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freeze-drying induced self-assembly approach for scalable constructing MoS
    Wang S; Wang R; Zhao Q; Ren L; Wen J; Chang J; Fang X; Hu N; Xu C
    J Colloid Interface Sci; 2019 May; 544():37-45. PubMed ID: 30825799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchically porous three-dimensional electrodes of CoMoO₄ and ZnCo₂O₄ and their high anode performance for lithium ion batteries.
    Yu H; Guan C; Rui X; Ouyang B; Yadian B; Huang Y; Zhang H; Hoster HE; Fan HJ; Yan Q
    Nanoscale; 2014 Sep; 6(18):10556-61. PubMed ID: 25117647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries.
    Ding B; Yuan C; Shen L; Xu G; Nie P; Zhang X
    Chemistry; 2013 Jan; 19(3):1013-9. PubMed ID: 23180622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance.
    Zhao X; Hu C; Cao M
    Chem Asian J; 2013 Nov; 8(11):2701-7. PubMed ID: 23946108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries.
    Xing A; Zhang J; Bao Z; Mei Y; Gordin AS; Sandhage KH
    Chem Commun (Camb); 2013 Aug; 49(60):6743-5. PubMed ID: 23783092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ fabrication of porous graphene electrodes for high-performance energy storage.
    Wang ZL; Xu D; Wang HG; Wu Z; Zhang XB
    ACS Nano; 2013 Mar; 7(3):2422-30. PubMed ID: 23383862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.
    Yang Y; Chen D; Liu B; Zhao J
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7497-504. PubMed ID: 25816108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.