BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24506528)

  • 1. Electrode subset selection methods for an EEG-based P300 brain-computer interface.
    McCann MT; Thompson DE; Syed ZH; Huggins JE
    Disabil Rehabil Assist Technol; 2015 May; 10(3):216-20. PubMed ID: 24506528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for optimizing EEG electrode number and configuration for signal acquisition in P300 speller systems.
    Speier W; Deshpande A; Pouratian N
    Clin Neurophysiol; 2015 Jun; 126(6):1171-1177. PubMed ID: 25316166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel selection methods for the P300 Speller.
    Colwell KA; Ryan DB; Throckmorton CS; Sellers EW; Collins LM
    J Neurosci Methods; 2014 Jul; 232():6-15. PubMed ID: 24797224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm.
    Mayaud L; Congedo M; Van Laghenhove A; Orlikowski D; Figère M; Azabou E; Cheliout-Heraut F
    Neurophysiol Clin; 2013 Oct; 43(4):217-27. PubMed ID: 24094907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier.
    De Vos M; Kroesen M; Emkes R; Debener S
    J Neural Eng; 2014 Jun; 11(3):036008. PubMed ID: 24763067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of stimulus timing features on P300 speller performance.
    Lu J; Speier W; Hu X; Pouratian N
    Clin Neurophysiol; 2013 Feb; 124(2):306-14. PubMed ID: 22939456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust sensor-selection method for P300 brain-computer interfaces.
    Cecotti H; Rivet B; Congedo M; Jutten C; Bertrand O; Maby E; Mattout J
    J Neural Eng; 2011 Feb; 8(1):016001. PubMed ID: 21245524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projected accuracy metric for the P300 Speller.
    Colwell K; Throckmorton C; Collins L; Morton K
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):921-5. PubMed ID: 25203496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pairwise and variance based signal compression algorithm (PVBSC) in the P300 based speller systems using EEG signals.
    Arican M; Polat K
    Comput Methods Programs Biomed; 2019 Jul; 176():149-157. PubMed ID: 31200902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG sensor selection by sparse spatial filtering in P300 speller brain-computer interface.
    Rivet B; Cecotti H; Phlypo R; Bertrand O; Maby E; Mattout J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5379-82. PubMed ID: 21096264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient 3D column-only P300 speller paradigm utilizing few numbers of electrodes and flashings for practical BCI implementation.
    Korkmaz OE; Aydemir O; Oral EA; Ozbek IY
    PLoS One; 2022; 17(4):e0265904. PubMed ID: 35413050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface.
    Clements JM; Sellers EW; Ryan DB; Caves K; Collins LM; Throckmorton CS
    J Neural Eng; 2016 Dec; 13(6):066018. PubMed ID: 27819250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Graphical User Interface in the design of P300 based Brain-Computer Interface systems.
    Ratcliffe L; Puthusserypady S
    Comput Biol Med; 2020 Feb; 117():103599. PubMed ID: 32072963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-computer interface speller system design from electroencephalogram signals with channel selection algorithms.
    Khairullah E; Arican M; Polat K
    Med Hypotheses; 2020 Aug; 141():109690. PubMed ID: 32278892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration on performance with P300-based BCI systems: a matter of interface features.
    da Silva-Sauer L; Valero-Aguayo L; de la Torre-Luque A; Ron-Angevin R; Varona-Moya S
    Appl Ergon; 2016 Jan; 52():325-32. PubMed ID: 26360225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Speller Size on a Visual P300 Brain-Computer Interface (BCI) System under Two Conditions of Constraint for Eye Movement.
    Ron-Angevin R; Garcia L; Fernández-Rodríguez Á; Saracco J; André JM; Lespinet-Najib V
    Comput Intell Neurosci; 2019; 2019():7876248. PubMed ID: 31354802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UMA-BCI Speller: An easily configurable P300 speller tool for end users.
    Velasco-Álvarez F; Sancha-Ros S; García-Garaluz E; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R
    Comput Methods Programs Biomed; 2019 Apr; 172():127-138. PubMed ID: 30902124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.