BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 24506618)

  • 1. Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma.
    Zhang H; Zhong H; Barth RF; Cao M; Das IJ
    Med Phys; 2014 Feb; 41(2):021727. PubMed ID: 24506618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionated grid therapy in treating cervical cancers: conventional fractionation or hypofractionation?
    Zhang H; Wang JZ; Mayr N; Kong X; Yuan J; Gupta N; Lo S; Grecula J; Montebello J; Martin D; Yuh W
    Int J Radiat Oncol Biol Phys; 2008 Jan; 70(1):280-8. PubMed ID: 17967516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic analysis of high-dose-rate (192)Ir vaginal cuff brachytherapy for endometrial cancer using a cylindrical target volume model and varied cancer cell distributions.
    Zhang H; Donnelly ED; Strauss JB; Qi Y
    Med Phys; 2016 Jan; 43(1):483. PubMed ID: 26745941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical Note: Dosimetric impact of spherical applicator size in Intrabeam™ IORT for treating unicentric breast cancer lesions.
    Saleh Y; Zhang H
    Med Phys; 2017 Dec; 44(12):6706-6714. PubMed ID: 29072347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric validation of the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy.
    Zhang H; Johnson EL; Zwicker RD
    Int J Radiat Oncol Biol Phys; 2006 Dec; 66(5):1576-83. PubMed ID: 17126214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric advantages of IMRT simultaneous integrated boost for high-risk prostate cancer.
    Li XA; Wang JZ; Jursinic PA; Lawton CA; Wang D
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(4):1251-7. PubMed ID: 15752907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A treatment planning approach to spatially fractionated megavoltage grid therapy for bulky lung cancer.
    Costlow HN; Zhang H; Das IJ
    Med Dosim; 2014; 39(3):218-26. PubMed ID: 24833301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple dosimetric approach to spatially fractionated GRID radiation therapy using the multileaf collimator for treatment of breast cancers in the prone position.
    Murphy NL; Philip R; Wozniak M; Lee BH; Donnelly ED; Zhang H
    J Appl Clin Med Phys; 2020 Nov; 21(11):105-114. PubMed ID: 33119939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose evaluation of Grid Therapy using a 6 MV flattening filter-free (FFF) photon beam: A Monte Carlo study.
    Martínez-Rovira I; Puxeu-Vaqué J; Prezado Y
    Med Phys; 2017 Oct; 44(10):5378-5383. PubMed ID: 28736809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is grid therapy useful for all tumors and every grid block design?
    Gholami S; Nedaie HA; Longo F; Ay MR; Wright S; Meigooni AS
    J Appl Clin Med Phys; 2016 Mar; 17(2):206-219. PubMed ID: 27074484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic analysis of Intrabeam-based intraoperative radiation therapy in the treatment of unicentric breast cancer lesions utilizing a spherical target volume model.
    Schwid M; Donnelly ED; Zhang H
    J Appl Clin Med Phys; 2017 Sep; 18(5):184-194. PubMed ID: 28741896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT).
    Wang JZ; Li XA; D'Souza WD; Stewart RD
    Int J Radiat Oncol Biol Phys; 2003 Oct; 57(2):543-52. PubMed ID: 12957268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.
    Narayanasamy G; Zhang X; Meigooni A; Paudel N; Morrill S; Maraboyina S; Peacock L; Penagaricano J
    Acta Oncol; 2017 Aug; 56(8):1043-1047. PubMed ID: 28270018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.
    Balderson MJ; Kirkby C
    Int J Radiat Biol; 2015 Jan; 91(1):54-61. PubMed ID: 25004946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical effectiveness of cell survival in fractionated radiotherapy with hypoxia-targeted dose escalation.
    Chvetsov AV; Rajendran JG; Zeng J; Patel SA; Bowen SR; Kim EY
    Med Phys; 2017 May; 44(5):1975-1982. PubMed ID: 28236652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of a large number of clinical studies for breast cancer radiotherapy: estimation of radiobiological parameters for treatment planning.
    Guerrero M; Li XA
    Phys Med Biol; 2003 Oct; 48(20):3307-26. PubMed ID: 14620060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regarding: Rosenthal DI, Glatstein E. "We've Got a Treatment, but What's the Disease?" The Oncologist 1996;1.
    Lunsford LD; Flickinger JC; Larson D
    Oncologist; 1997; 2(1):59-61. PubMed ID: 10388030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the formalism of equivalent uniform dose based on the linear-quadratic and universal survival curve models in high-dose stereotactic body radiotherapy.
    Chan MKH; Chiang CL
    Strahlenther Onkol; 2021 Jul; 197(7):622-632. PubMed ID: 33245378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feasibility study: Selection of a personalized radiotherapy fractionation schedule using spatiotemporal optimization.
    Kim M; Stewart RD; Phillips MH
    Med Phys; 2015 Nov; 42(11):6671-8. PubMed ID: 26520757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect.
    Song W; Battista J; Van Dyk J
    Med Phys; 2004 Nov; 31(11):3034-45. PubMed ID: 15587657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.