BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

821 related articles for article (PubMed ID: 24506632)

  • 41. Cardiac motion correction based on partial angle reconstructed images in x-ray CT.
    Kim S; Chang Y; Ra JB
    Med Phys; 2015 May; 42(5):2560-71. PubMed ID: 25979048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging.
    Hulme KW; Kappadath SC
    Med Phys; 2014 Apr; 41(4):042502. PubMed ID: 24694155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation.
    Idris A E; Fessler JA
    Phys Med Biol; 2003 Aug; 48(15):2453-77. PubMed ID: 12953909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction.
    Yan CH; Whalen RT; Beaupré GS; Yen SY; Napel S
    IEEE Trans Med Imaging; 2000 Jan; 19(1):1-11. PubMed ID: 10782614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal Artifact Reduction in Pelvic Computed Tomography With Hip Prostheses: Comparison of Virtual Monoenergetic Extrapolations From Dual-Energy Computed Tomography and an Iterative Metal Artifact Reduction Algorithm in a Phantom Study.
    Higashigaito K; Angst F; Runge VM; Alkadhi H; Donati OF
    Invest Radiol; 2015 Dec; 50(12):828-34. PubMed ID: 26171565
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simplified Statistical Image Reconstruction for X-ray CT With Beam-Hardening Artifact Compensation.
    Abella M; Martinez C; Desco M; Vaquero JJ; Fessler JA
    IEEE Trans Med Imaging; 2020 Jan; 39(1):111-118. PubMed ID: 31180844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A virtual sinogram method to reduce dental metallic implant artefacts in computed tomography-based attenuation correction for PET.
    Abdoli M; Ay MR; Ahmadian A; Zaidi H
    Nucl Med Commun; 2010 Jan; 31(1):22-31. PubMed ID: 19829166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector.
    Park HS; Hwang D; Seo JK
    IEEE Trans Med Imaging; 2016 Feb; 35(2):480-7. PubMed ID: 26390451
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beam hardening correction in CT myocardial perfusion measurement.
    So A; Hsieh J; Li JY; Lee TY
    Phys Med Biol; 2009 May; 54(10):3031-50. PubMed ID: 19398817
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Updated breast CT dose coefficients (DgN
    Hernandez AM; Becker AE; Boone JM
    Med Phys; 2019 Mar; 46(3):1455-1466. PubMed ID: 30661250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media.
    Grant KL; Flohr TG; Krauss B; Sedlmair M; Thomas C; Schmidt B
    Invest Radiol; 2014 Sep; 49(9):586-92. PubMed ID: 24710203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Denoising of polychromatic CT images based on their own noise properties.
    Kim JH; Chang Y; Ra JB
    Med Phys; 2016 May; 43(5):2251. PubMed ID: 27147337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A method for simultaneous correction of spectrum hardening artifacts in CT images containing both bone and iodine.
    Joseph PM; Ruth C
    Med Phys; 1997 Oct; 24(10):1629-34. PubMed ID: 9350717
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analytical expressions for the reconstructed image of a homogeneous cylindrical sample exhibiting a beam hardening artifact in X-ray computed tomography.
    Nakano T; Nakashima Y
    J Xray Sci Technol; 2018; 26(5):691-705. PubMed ID: 29991152
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of hybrid SART  +  OS  +  TV iterative reconstruction algorithm for optical-CT gel dosimeter imaging.
    Du Y; Wang X; Xiang X; Wei Z
    Phys Med Biol; 2016 Dec; 61(24):8425-8439. PubMed ID: 27845916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual energy computed tomography: simulated monoenergetic and material-selective imaging.
    Hemmingsson A; Jung B; Ytterbergh C
    J Comput Assist Tomogr; 1986; 10(3):490-9. PubMed ID: 3700755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A spectral interior CT by a framelet-based reconstruction algorithm.
    Wang Y; Wang G; Mao S; Cong W; Ji Z; Cai JF; Ye Y
    J Xray Sci Technol; 2016 Nov; 24(6):771-785. PubMed ID: 27911354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alpha image reconstruction (AIR): a new iterative CT image reconstruction approach using voxel-wise alpha blending.
    Hofmann C; Sawall S; Knaup M; Kachelrieß M
    Med Phys; 2014 Jun; 41(6):061914. PubMed ID: 24877825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.