These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24506842)

  • 1. Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors.
    Kliros GS
    Nanoscale Res Lett; 2014 Feb; 9(1):65. PubMed ID: 24506842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.
    Rahmani M; Ahmadi MT; Abadi HK; Saeidmanesh M; Akbari E; Ismail R
    Nanoscale Res Lett; 2013 Jan; 8(1):55. PubMed ID: 23363692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study.
    Tamersit K; Moaiyeri MH; Jooq MKQ
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35947928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study of tunneling transistor based on graphene nanoribbon.
    Zhao P; Chauhan J; Guo J
    Nano Lett; 2009 Feb; 9(2):684-8. PubMed ID: 19199761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs.
    Zhang JH; Huang QA; Yu H; Lei SY
    Sensors (Basel); 2009; 9(4):2746-59. PubMed ID: 22574043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The understanding of the impact of efficiently optimized underlap length on analog/RF performance parameters of GNR-FETs.
    Ahmad MA; Kumar J
    Sci Rep; 2023 Aug; 13(1):13872. PubMed ID: 37620403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain Gated Bilayer Molybdenum Disulfide Field Effect Transistor with Edge Contacts.
    Chai Y; Su S; Yan D; Ozkan M; Lake R; Ozkan CS
    Sci Rep; 2017 Feb; 7():41593. PubMed ID: 28186113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance flexible graphene field effect transistors with ion gel gate dielectrics.
    Kim BJ; Jang H; Lee SK; Hong BH; Ahn JH; Cho JH
    Nano Lett; 2010 Sep; 10(9):3464-6. PubMed ID: 20704323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance Analysis of an α-Graphyne Nano-Field Effect Transistor.
    Khan H; Islam MM; Roya RI; Azad SN; Alam M
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved performance of graphene transistors by strain engineering.
    Nguyen VH; Nguyen HV; Dollfus P
    Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trade-off analysis between g
    Ahmad MA; Kumar P; Mech BC; Kumar J
    Sci Rep; 2024 May; 14(1):10218. PubMed ID: 38702353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.
    Wasfi A; Al Hamarna A; Al Shehhi OMH; Al Ameri HFM; Awwad F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach.
    Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Jul; 7(13):2478-82. PubMed ID: 27299184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical performance of 3 m and 3 m +1 armchair graphene nanoribbons under uniaxial strain.
    Kang ES; Ismail R
    Nanoscale Res Lett; 2014; 9(1):598. PubMed ID: 25404871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors.
    Shen T; Penumatcha AV; Appenzeller J
    ACS Nano; 2016 Apr; 10(4):4712-8. PubMed ID: 27043387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploration of underlap induced high-k spacer with gate stack on strain channel cylindrical nanowire FET for enriched performance.
    Barik R; Dhar RS; Hussein MI
    Sci Rep; 2024 Feb; 14(1):2902. PubMed ID: 38316975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors.
    Mao LF
    Nanotechnology; 2009 Jul; 20(27):275203. PubMed ID: 19528675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Opacity of the Gate Field Inside MoS
    Ji H; Ghimire MK; Lee G; Yi H; Sakong W; Gul HZ; Yun Y; Jiang J; Kim J; Joo MK; Suh D; Lim SC
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29022-29028. PubMed ID: 31313897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the Number of Graphene Nanoribbons in Dual-Gate Field-Effect Transistors.
    Zhang J; Barin GB; Furrer R; Du CZ; Wang XY; Müllen K; Ruffieux P; Fasel R; Calame M; Perrin ML
    Nano Lett; 2023 Sep; 23(18):8474-8480. PubMed ID: 37671914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.