These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 24506939)

  • 1. Effect of posterior cruciate ligament creep on muscular co-activation around knee: a pilot study.
    Cheng X; Zhang T; Shan X; Wang J
    J Electromyogr Kinesiol; 2014 Apr; 24(2):271-6. PubMed ID: 24506939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromuscular disorder in response to anterior cruciate ligament creep.
    Chu D; LeBlanc R; D'Ambrosia P; D'Ambrosia R; Baratta RV; Solomonow M
    Clin Biomech (Bristol, Avon); 2003 Mar; 18(3):222-30. PubMed ID: 12620785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of a popliteus muscle load on in situ forces in the posterior cruciate ligament and on knee kinematics. A human cadaveric study.
    Harner CD; Höher J; Vogrin TM; Carlin GJ; Woo SL
    Am J Sports Med; 1998; 26(5):669-73. PubMed ID: 9784814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study.
    Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD
    J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of knee flexion angle and loading conditions on the end-to-end distance of the posterior cruciate ligament: a comparison of the roles of the anterolateral and posteromedial bundles.
    Wang JH; Kato Y; Ingham SJ; Maeyama A; Linde-Rosen M; Smolinski P; Fu FH; Harner C
    Am J Sports Med; 2014 Dec; 42(12):2972-8. PubMed ID: 25315993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads--an in vitro experimental study.
    Li G; Gill TJ; DeFrate LE; Zayontz S; Glatt V; Zarins B
    J Orthop Res; 2002 Jul; 20(4):887-92. PubMed ID: 12168683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Codominance of the individual posterior cruciate ligament bundles. An analysis of bundle lengths and orientation.
    Ahmad CS; Cohen ZA; Levine WN; Gardner TR; Ateshian GA; Mow VC
    Am J Sports Med; 2003; 31(2):221-5. PubMed ID: 12642256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of posterior cruciate ligament in total knee arthroplasty.
    Ma Y; Chen WJ; Nagamine R
    J Orthop Surg (Hong Kong); 2017 Jan; 25(1):2309499017690976. PubMed ID: 28219307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of tibial torque and knee flexion angle: implications for understanding knee injury.
    Senter C; Hame SL
    Sports Med; 2006; 36(8):635-41. PubMed ID: 16869706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensatory muscle activity in the posterior cruciate ligament-deficient knee during isokinetic knee motion.
    Inoue M; Yasuda K; Yamanaka M; Wada T; Kaneda K
    Am J Sports Med; 1998; 26(5):710-4. PubMed ID: 9784820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.
    Giffin JR; Stabile KJ; Zantop T; Vogrin TM; Woo SL; Harner CD
    Am J Sports Med; 2007 Sep; 35(9):1443-9. PubMed ID: 17641101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tibial positioning on the diagnosis of posterolateral rotatory instability in the posterior cruciate ligament-deficient knee.
    Strauss EJ; Ishak C; Inzerillo C; Walsh M; Yildirim G; Walker P; Jazrawi L; Rosen J
    Br J Sports Med; 2007 Aug; 41(8):481-5; discussion 485. PubMed ID: 17261553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation.
    Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE
    J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sectioning the posterolateral structures on knee kinematics and in situ forces in the posterior cruciate ligament.
    Vogrin TM; Höher J; Arøen A; Woo SL; Harner CD
    Knee Surg Sports Traumatol Arthrosc; 2000; 8(2):93-8. PubMed ID: 10795671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of the posterior cruciate ligament during knee flexion--MRI analysis.
    Komatsu T; Kadoya Y; Nakagawa S; Yoshida G; Takaoka K
    J Orthop Res; 2005 Mar; 23(2):334-9. PubMed ID: 15734245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonist muscle moment is increased in ACL deficient subjects during maximal dynamic knee extension.
    Alkjær T; Simonsen EB; Magnusson SP; Dyhre-Poulsen P; Aagaard P
    Knee; 2012 Oct; 19(5):633-9. PubMed ID: 22284964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of the Neurovascular Bundle of the Knee during Flexed and Extended Position: An MRI Study.
    Keyurapan E; Phoemphunkunarak W; Lektrakool N
    J Med Assoc Thai; 2016 Oct; 99(10):1102-9. PubMed ID: 29952454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are hamstrings activated to counteract shear forces during isometric knee extension efforts in healthy subjects?
    Kingma I; Aalbersberg S; van Dieën JH
    J Electromyogr Kinesiol; 2004 Jun; 14(3):307-15. PubMed ID: 15094144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of muscle forces and external loads on cruciate ligament strain.
    Dürselen L; Claes L; Kiefer H
    Am J Sports Med; 1995; 23(1):129-36. PubMed ID: 7726343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of the posterior cruciate ligament using a 3D computer model: ligament biometry during flexion, application to surgical replacement of the ligament].
    Boisgard S; Levai JP; Saidane K; Geiger B; Landjerit B
    Acta Orthop Belg; 1999 Dec; 65(4):492-502. PubMed ID: 10675945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.