These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 2450697)
41. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Yan GX; Antzelevitch C Circulation; 1999 Oct; 100(15):1660-6. PubMed ID: 10517739 [TBL] [Abstract][Full Text] [Related]
42. Termination of reentrant propagation by a single stimulus: a model study. Quan WL; Rudy Y Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1700-6. PubMed ID: 1721161 [TBL] [Abstract][Full Text] [Related]
43. Termination of reentry by lidocaine in the tricuspid ring in vitro. Role of cycle-length oscillation, fast use-dependent kinetics, and fixed block. Fei H; Yazmajian D; Hanna MS; Frame LH Circ Res; 1997 Feb; 80(2):242-52. PubMed ID: 9012746 [TBL] [Abstract][Full Text] [Related]
44. Simulation of two-dimensional anisotropic cardiac reentry: effects of the wavelength on the reentry characteristics. Leon LJ; Roberge FA; Vinet A Ann Biomed Eng; 1994; 22(6):592-609. PubMed ID: 7872570 [TBL] [Abstract][Full Text] [Related]
45. Control of ionic permeabilities in normal and ischemic heart. Coraboeuf E; Deroubaix E; Hoerter J Circ Res; 1976 May; 38(5 Suppl 1):I92-8. PubMed ID: 5203 [TBL] [Abstract][Full Text] [Related]
46. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. Allessie MA; Bonke FI; Schopman FJ Circ Res; 1976 Aug; 39(2):168-77. PubMed ID: 939001 [TBL] [Abstract][Full Text] [Related]
47. Optical mapping in a new guinea pig model of ventricular tachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit. Girouard SD; Pastore JM; Laurita KR; Gregory KW; Rosenbaum DS Circulation; 1996 Feb; 93(3):603-13. PubMed ID: 8565181 [TBL] [Abstract][Full Text] [Related]
48. Differential effects of heptanol, potassium, and tetrodotoxin on reentrant ventricular tachycardia around a fixed obstacle in anisotropic myocardium. Brugada J; Mont L; Boersma L; Kirchhof C; Allessie MA Circulation; 1991 Sep; 84(3):1307-18. PubMed ID: 1884454 [TBL] [Abstract][Full Text] [Related]
49. Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Valderrábano M Prog Biophys Mol Biol; 2007; 94(1-2):144-68. PubMed ID: 17482242 [TBL] [Abstract][Full Text] [Related]
50. Determinants of electrical propagation and propagation block in Arrhythmogenic Cardiomyopathy. Jin Q; Lee KY; Selimi Z; Shimura D; Wang E; Zimmerman JF; Shaw RM; Kucera JP; Parker KK; Saffitz JE; Kleber AG J Mol Cell Cardiol; 2024 Jan; 186():71-80. PubMed ID: 37956903 [TBL] [Abstract][Full Text] [Related]
51. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. Rogers JM; McCulloch AD J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294 [TBL] [Abstract][Full Text] [Related]
52. Circus movement in the canine atrium around the tricuspid ring during experimental atrial flutter and during reentry in vitro. Frame LH; Page RL; Boyden PA; Fenoglio JJ; Hoffman BF Circulation; 1987 Nov; 76(5):1155-75. PubMed ID: 3665000 [TBL] [Abstract][Full Text] [Related]
53. Variability of recovery of excitability in the normal canine and the ischaemic porcine heart. Janse MJ; Capucci A; Coronel R; Fabius MA Eur Heart J; 1985 Nov; 6 Suppl D():41-52. PubMed ID: 2417853 [TBL] [Abstract][Full Text] [Related]
54. [Lidocaine action on the ion currents of normal and depolarized myocardial fibers in membrane potential fixation]. Chikharev VN; Mal'tsev VA; Rozenshtraukh LV Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1981; 4(2):58-66. PubMed ID: 6274368 [TBL] [Abstract][Full Text] [Related]
55. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Ursell PC; Gardner PI; Albala A; Fenoglio JJ; Wit AL Circ Res; 1985 Mar; 56(3):436-51. PubMed ID: 3971515 [TBL] [Abstract][Full Text] [Related]
56. Role of gap junctions in the propagation of the cardiac action potential. Rohr S Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351 [TBL] [Abstract][Full Text] [Related]
57. Anisotropic conduction block and reentry in neonatal rat ventricular myocyte monolayers. de Diego C; Chen F; Xie Y; Pai RK; Slavin L; Parker J; Lamp ST; Qu Z; Weiss JN; Valderrábano M Am J Physiol Heart Circ Physiol; 2011 Jan; 300(1):H271-8. PubMed ID: 21037233 [TBL] [Abstract][Full Text] [Related]
58. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities. Fast VG; Darrow BJ; Saffitz JE; Kléber AG Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559 [TBL] [Abstract][Full Text] [Related]
59. Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Gray RA; Pertsov AM; Jalife J Circulation; 1996 Nov; 94(10):2649-61. PubMed ID: 8921813 [TBL] [Abstract][Full Text] [Related]
60. The nature of electrical propagation in cardiac muscle. Spach MS; Kootsey JM Am J Physiol; 1983 Jan; 244(1):H3-22. PubMed ID: 6336913 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]