BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24507144)

  • 1. Predictive modeling of chemical toxicity towards Pseudokirchneriella subcapitata using regression and classification based approaches.
    Pramanik S; Roy K
    Ecotoxicol Environ Saf; 2014 Mar; 101():184-90. PubMed ID: 24507144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata.
    Yu X
    Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of concealed structural alerts using QSTR modeling for Pseudokirchneriella subcapitata.
    Masand VH; Zaki MEA; Al-Hussain SA; Ghorbal AB; Akasapu S; Lewaa I; Ghosh A; Jawarkar RD
    Aquat Toxicol; 2021 Oct; 239():105962. PubMed ID: 34525418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecotoxicological prediction of organic chemicals toward
    Lotfi S; Ahmadi S; Kumar P
    RSC Adv; 2022 Aug; 12(38):24988-24997. PubMed ID: 36199875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach.
    Khan K; Roy K
    SAR QSAR Environ Res; 2017 Jul; 28(7):567-594. PubMed ID: 28780892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action.
    Bakire S; Yang X; Ma G; Wei X; Yu H; Chen J; Lin H
    Chemosphere; 2018 Jan; 190():463-470. PubMed ID: 29028601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata.
    Aruoja V; Moosus M; Kahru A; Sihtmäe M; Maran U
    Chemosphere; 2014 Feb; 96():23-32. PubMed ID: 23895738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSTR with extended topochemical atom (ETA) indices. 12. QSAR for the toxicity of diverse aromatic compounds to Tetrahymena pyriformis using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2009 Nov; 77(7):999-1009. PubMed ID: 19709717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algal growth inhibition test results of 425 organic chemical substances.
    Kusk KO; Christensen AM; Nyholm N
    Chemosphere; 2018 Aug; 204():405-412. PubMed ID: 29677648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSTR with extended topochemical atom indices. 10. Modeling of toxicity of organic chemicals to humans using different chemometric tools.
    Roy K; Ghosh G
    Chem Biol Drug Des; 2008 Nov; 72(5):383-94. PubMed ID: 19012574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First report on ecotoxicological QSTR and i-QSTR modeling for the prediction of acute ecotoxicity of diverse organic chemicals against three protozoan species.
    Kumar A; Kumar V; Podder T; Ojha PK
    Chemosphere; 2023 Sep; 335():139066. PubMed ID: 37257655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquatic toxicity (Pre)screening strategy for structurally diverse chemicals: global or local classification tree models?
    Gajewicz-Skretna A; Gromelski M; Wyrzykowska E; Furuhama A; Yamamoto H; Suzuki N
    Ecotoxicol Environ Saf; 2021 Jan; 208():111738. PubMed ID: 33396066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of whole-sediment toxicity test using immobilized freshwater microalgae Pseudokirchneriella subcapitata.
    Zhang LJ; Ying GG; Chen F; Zhao JL; Wang L; Fang YX
    Environ Toxicol Chem; 2012 Feb; 31(2):377-86. PubMed ID: 22065399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationships for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata.
    Hsieh SH; Hsu CH; Tsai DY; Chen CY
    Environ Toxicol Chem; 2006 Nov; 25(11):2920-6. PubMed ID: 17089715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites.
    Cedergreen N; Christensen AM; Kamper A; Kudsk P; Mathiassen SK; Streibig JC; Sørensen H
    Environ Toxicol Chem; 2008 Jul; 27(7):1621-32. PubMed ID: 18271647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring an ecotoxicity database with the OECD (Q)SAR Toolbox and DRAGON descriptors in order to prioritise testing on algae, daphnids, and fish.
    Tebby C; Mombelli E; Pandard P; Péry AR
    Sci Total Environ; 2011 Aug; 409(18):3334-43. PubMed ID: 21684579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action.
    Fu L; Huang T; Wang S; Wang X; Su L; Li C; Zhao Y
    Chemosphere; 2017 Feb; 168():217-222. PubMed ID: 27783962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.
    Singh KP; Gupta S; Basant N; Mohan D
    Chem Res Toxicol; 2014 Sep; 27(9):1504-15. PubMed ID: 25167463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.