These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24507196)

  • 1. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.
    Doron G; von Heimendahl M; Schlattmann P; Houweling AR; Brecht M
    Neuron; 2014 Feb; 81(3):653-63. PubMed ID: 24507196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics.
    Tateno T; Harsch A; Robinson HP
    J Neurophysiol; 2004 Oct; 92(4):2283-94. PubMed ID: 15381746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioural report of single neuron stimulation in somatosensory cortex.
    Houweling AR; Brecht M
    Nature; 2008 Jan; 451(7174):65-8. PubMed ID: 18094684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuron synchronization in the rat gracilis nucleus facilitates sensory transmission in the somatosensory pathway.
    Malmierca E; Castellanos NP; Nuñez-Medina A; Makarov VA; Nuñez A
    Eur J Neurosci; 2009 Aug; 30(4):593-601. PubMed ID: 19686471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex.
    Vardar B; Güçlü B
    Somatosens Mot Res; 2017 Sep; 34(3):189-203. PubMed ID: 29096588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell type- and activity-dependent extracellular correlates of intracellular spiking.
    Anastassiou CA; Perin R; Buzsáki G; Markram H; Koch C
    J Neurophysiol; 2015 Jul; 114(1):608-23. PubMed ID: 25995352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally precise control of single-neuron spiking by juxtacellular nanostimulation.
    Stüttgen MC; Nonkes LJP; Geis HRAP; Tiesinga PH; Houweling AR
    J Neurophysiol; 2017 Mar; 117(3):1363-1378. PubMed ID: 28077663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating network parameters from combined dynamics of firing rate and irregularity of single neurons.
    Hamaguchi K; Riehle A; Brunel N
    J Neurophysiol; 2011 Jan; 105(1):487-500. PubMed ID: 20719928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input and frequency-specific entrainment of postsynaptic firing by IPSPs of perisomatic or dendritic origin.
    Tamás G; Szabadics J; Lörincz A; Somogyi P
    Eur J Neurosci; 2004 Nov; 20(10):2681-90. PubMed ID: 15548211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast oscillations trigger bursts of action potentials in neocortical neurons in vitro: a quasi-white-noise analysis study.
    Schindler KA; Goodman PH; Wieser HG; Douglas RJ
    Brain Res; 2006 Sep; 1110(1):201-10. PubMed ID: 16879807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics.
    Tateno T; Robinson HP
    J Neurophysiol; 2006 Apr; 95(4):2650-63. PubMed ID: 16551842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between neural spike trains increases with firing rate.
    de la Rocha J; Doiron B; Shea-Brown E; Josić K; Reyes A
    Nature; 2007 Aug; 448(7155):802-6. PubMed ID: 17700699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced response of neurons in rat somatosensory cortex to stimuli containing temporal noise.
    Lak A; Arabzadeh E; Diamond ME
    Cereb Cortex; 2008 May; 18(5):1085-93. PubMed ID: 17712164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Similarity of direction tuning among responses to stimulation of different whiskers in neurons of rat barrel cortex.
    Kida H; Shimegi S; Sato H
    J Neurophysiol; 2005 Sep; 94(3):2004-18. PubMed ID: 15972836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons.
    Tropp Sneider J; Chrobak JJ; Quirk MC; Oler JA; Markus EJ
    Neuroscience; 2006 Sep; 141(4):1665-77. PubMed ID: 16843607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.