BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24507293)

  • 21. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Green and Sustainable Hot Melt Adhesive (HMA) Based on Polyhydroxyalkanoate (PHA) and Silanized Cellulose Nanofibers (SCNFs).
    Jo J; Jeong SY; Lee J; Park C; Koo B
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.
    Lavoratti A; Scienza LC; Zattera AJ
    Carbohydr Polym; 2016 Jan; 136():955-63. PubMed ID: 26572434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into structure and properties of cellulose nanofibrils (CNFs) prepared by screw extrusion and deep eutectic solvent permeation.
    Yan M; Tian C; Wu T; Huang X; Zhong Y; Yang P; Zhang L; Ma J; Lu H; Zhou X
    Int J Biol Macromol; 2021 Nov; 191():422-431. PubMed ID: 34563572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.
    Carrillo CA; Nypelö T; Rojas OJ
    Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of biodegradable nanofiber filters based on surface-modified cellulose nanofibers with graphene oxide for high removal of airborne particulate matter.
    Ashori A; Sepahvand S; Jonoobi M
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129687. PubMed ID: 38272414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal stability of starch bionanocomposites films: Exploring the role of esterified cellulose nanofibers isolated from crop residue.
    Ahuja D; Kumar L; Kaushik A
    Carbohydr Polym; 2021 Mar; 255():117466. PubMed ID: 33436234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical modification of jute fibers for the production of green-composites.
    Corrales F; Vilaseca F; Llop M; Gironès J; Méndez JA; Mutjè P
    J Hazard Mater; 2007 Jun; 144(3):730-5. PubMed ID: 17320283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic-Inspired One-Step Strategy for Improvement of Interfacial Interactions in Cellulose Nanofibers by Modification of the Surface of Nitramine Explosives.
    Chen L; Cao X; Chen Y; Li Q; Wang Y; Wang X; Qin Y; Cao X; Liu J; Shao Z; He W
    Langmuir; 2021 Jul; 37(28):8486-8497. PubMed ID: 34236199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate.
    Sèbe G; Ham-Pichavant F; Pecastaings G
    Biomacromolecules; 2013 Aug; 14(8):2937-44. PubMed ID: 23883187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals.
    Ávila Ramírez JA; Fortunati E; Kenny JM; Torre L; Foresti ML
    Carbohydr Polym; 2017 Feb; 157():1358-1364. PubMed ID: 27987843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylation of sugarcane bagasse using NBS as a catalyst under mild reaction conditions for the production of oil sorption-active materials.
    Sun XF; Sun RC; Sun JX
    Bioresour Technol; 2004 Dec; 95(3):343-50. PubMed ID: 15288278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.
    Abu-Danso E; Srivastava V; Sillanpää M; Bhatnagar A
    Int J Biol Macromol; 2017 Sep; 102():248-257. PubMed ID: 28366848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersion of acid-treated carbon nanofibers into gel matrices prepared by the sol-gel method.
    Kubota S; Nishikiori H; Tanaka N; Endo M; Fujii T
    J Phys Chem B; 2005 Dec; 109(49):23170-4. PubMed ID: 16375279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent.
    Huang P; Wu M; Kuga S; Wang D; Wu D; Huang Y
    ChemSusChem; 2012 Dec; 5(12):2319-22. PubMed ID: 23180637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study.
    Rokhina EV; Lahtinen M; Makarova K; Jegatheesan V; Virkutyte J
    Bioresour Technol; 2012 Jun; 113():127-31. PubMed ID: 22209137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct electrochemistry and electrocatalysis of reduced glutathione on CNFs-PDDA/PB nanocomposite film modified ITO electrode for biosensors.
    Muthirulan P; Velmurugan R
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):347-54. PubMed ID: 21215598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Addition of Cellulose Nanofibers to Control Surface Roughness for Hydrophobic Ceramic Coatings.
    Shin EA; Kim GH; Jung J; Lee SB; Lee CK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4492-4497. PubMed ID: 33714350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.