These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 24507325)

  • 1. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize.
    Cai C; Zhao L; Huang J; Chen Y; Wei C
    Carbohydr Polym; 2014 Feb; 102():606-14. PubMed ID: 24507325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous structure and spatial distribution in endosperm of high-amylose rice starch granules with different morphologies.
    Cai C; Huang J; Zhao L; Liu Q; Zhang C; Wei C
    J Agric Food Chem; 2014 Oct; 62(41):10143-52. PubMed ID: 25238128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment.
    Chen X; Du X; Chen P; Guo L; Xu Y; Zhou X
    Carbohydr Polym; 2017 Feb; 157():637-642. PubMed ID: 27987972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural variability between starch granules in wild type and in ae high-amylose mutant maize kernels.
    Liu D; Parker ML; Wellner N; Kirby AR; Cross K; Morris VJ; Cheng F
    Carbohydr Polym; 2013 Sep; 97(2):458-68. PubMed ID: 23911471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-temperature phase diagrams of maize starches with different amylose contents.
    Buckow R; Jankowiak L; Knorr D; Versteeg C
    J Agric Food Chem; 2009 Dec; 57(24):11510-6. PubMed ID: 19916500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule "ghost" integrity.
    Debet MR; Gidley MJ
    J Agric Food Chem; 2007 Jun; 55(12):4752-60. PubMed ID: 17503832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different structural properties of high-amylose maize starch fractions varying in granule size.
    Cai C; Lin L; Man J; Zhao L; Wang Z; Wei C
    J Agric Food Chem; 2014 Dec; 62(48):11711-21. PubMed ID: 25392928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties.
    Luo ZG; Shi YC
    J Agric Food Chem; 2012 Sep; 60(37):9468-75. PubMed ID: 22946555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.
    Wei C; Qin F; Zhu L; Zhou W; Chen Y; Wang Y; Gu M; Liu Q
    J Agric Food Chem; 2010 Jan; 58(2):1224-32. PubMed ID: 20030326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different structures of heterogeneous starch granules from high-amylose rice.
    Man J; Lin L; Wang Z; Wang Y; Liu Q; Wei C
    J Agric Food Chem; 2014 Nov; 62(46):11254-63. PubMed ID: 25373551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent effects on starch dissolution and gelatinization.
    Koganti N; Mitchell JR; Ibbett RN; Foster TJ
    Biomacromolecules; 2011 Aug; 12(8):2888-93. PubMed ID: 21696171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of semi-compound C-type starch granule in high-amylose rice developed by antisense RNA inhibition of starch-branching enzyme.
    Wei C; Qin F; Zhou W; Chen Y; Xu B; Wang Y; Gu M; Liu Q
    J Agric Food Chem; 2010 Oct; 58(20):11097-104. PubMed ID: 20866042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal structure and physicochemical properties of corn starches as revealed by chemical surface gelatinization.
    Kuakpetoon D; Wang YJ
    Carbohydr Res; 2007 Nov; 342(15):2253-63. PubMed ID: 17610854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acid hydrolysis on the evolution of starch fine molecular structures and gelatinization properties.
    Li C; Hu Y
    Food Chem; 2021 Aug; 353():129449. PubMed ID: 33714112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow digestion property of native cereal starches.
    Zhang G; Ao Z; Hamaker BR
    Biomacromolecules; 2006 Nov; 7(11):3252-8. PubMed ID: 17096558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of extrusion and digestion on the nanostructure of high-amylose maize starch.
    Lopez-Rubio A; Htoon A; Gilbert EP
    Biomacromolecules; 2007 May; 8(5):1564-72. PubMed ID: 17394285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features of non-granular spherulitic maize starch.
    Nordmark TS; Ziegler GR
    Carbohydr Res; 2002 Sep; 337(16):1467-75. PubMed ID: 12204608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness.
    Gayral M; Bakan B; Dalgalarrondo M; Elmorjani K; Delluc C; Brunet S; Linossier L; Morel MH; Marion D
    J Agric Food Chem; 2015 Apr; 63(13):3551-8. PubMed ID: 25794198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch.
    Qiu S; Yadav MP; Chen H; Liu Y; Tatsumi E; Yin L
    Carbohydr Polym; 2015 Jan; 115():246-52. PubMed ID: 25439892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.