These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24507335)

  • 1. Non-covalent hydrogels of cyclodextrins and poloxamines for the controlled release of proteins.
    Larrañeta E; Isasi JR
    Carbohydr Polym; 2014 Feb; 102():674-81. PubMed ID: 24507335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin.
    Li J; Ni X; Zhou Z; Leong KW
    J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled supramolecular gels of reverse poloxamers and cyclodextrins.
    Larrañeta E; Isasi JR
    Langmuir; 2012 Aug; 28(34):12457-62. PubMed ID: 22823574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin.
    Ni X; Cheng A; Li J
    J Biomed Mater Res A; 2009 Mar; 88(4):1031-6. PubMed ID: 18404710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro release from reverse poloxamine/α-cyclodextrin matrices: modelling and comparison of dissolution profiles.
    Larrañeta E; Martínez-Ohárriz C; Vélaz I; Zornoza A; Machín R; Isasi JR
    J Pharm Sci; 2014 Jan; 103(1):197-206. PubMed ID: 24338752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behavior of reverse poloxamers and poloxamines in water.
    Larrañeta E; Isasi JR
    Langmuir; 2013 Jan; 29(4):1045-53. PubMed ID: 23256509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective assembly of cyclodextrins on poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Mayer B; Klein CT; Topchieva IN; Köhler G
    J Comput Aided Mol Des; 1999 Jul; 13(4):373-83. PubMed ID: 10425602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (epsilon-caprolactone) diblock copolymer and alpha-cyclodextrin and their controlled release property.
    Li X; Li J
    J Biomed Mater Res A; 2008 Sep; 86(4):1055-61. PubMed ID: 18067162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular gels of poly-α-cyclodextrin and PEO-based copolymers for controlled drug release.
    Simões SM; Veiga F; Ribeiro AC; Figueiras AR; Taboada P; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2014 Aug; 87(3):579-88. PubMed ID: 24769064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.
    Firestone MA; Wolf AC; Seifert S
    Biomacromolecules; 2003; 4(6):1539-49. PubMed ID: 14606878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective tuning of the self-assembly and gelation of a hydrophilic poloxamine by cyclodextrins.
    González-Gaitano G; da Silva MA; Radulescu A; Dreiss CA
    Langmuir; 2015 May; 31(20):5645-55. PubMed ID: 25938931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers.
    Xu L; Zhang Z; Wang F; Xie D; Yang S; Wang T; Feng L; Chu C
    J Colloid Interface Sci; 2013 Mar; 393():174-81. PubMed ID: 23211870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular cyclodextrin pseudorotaxane hydrogels: a candidate for sustained release?
    Chee PL; Prasad A; Fang X; Owh C; Yeo VJ; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():6-12. PubMed ID: 24863190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of charged porphyrins with nonionic triblock copolymer hosts in aqueous solutions.
    Steinbeck CA; Hedin N; Chmelka BF
    Langmuir; 2004 Nov; 20(24):10399-412. PubMed ID: 15544366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic
    Khan S; Minhas MU; Ahmad M; Sohail M
    J Biomater Sci Polym Ed; 2018 Jan; 29(1):1-34. PubMed ID: 29059021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular hydrogels formed from biodegradable ternary COS-g-PCL-b-MPEG copolymer with alpha-cyclodextrin and their drug release.
    Zhao S; Lee J; Xu W
    Carbohydr Res; 2009 Nov; 344(16):2201-8. PubMed ID: 19744645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and alpha-cyclodextrin.
    Li J; Ni X; Leong KW
    J Biomed Mater Res A; 2003 May; 65(2):196-202. PubMed ID: 12734812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-alkylation of poloxamines modulates micellar assembly and encapsulation and release of the antiretroviral efavirenz.
    Chiappetta DA; Alvarez-Lorenzo C; Rey-Rico A; Taboada P; Concheiro A; Sosnik A
    Eur J Pharm Biopharm; 2010 Sep; 76(1):24-37. PubMed ID: 20493946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups.
    Huang K; Lee BP; Ingram DR; Messersmith PB
    Biomacromolecules; 2002; 3(2):397-406. PubMed ID: 11888328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.