BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24507370)

  • 1. Application of different feeding strategies in fed batch culture for pullulanase production using sago starch.
    R S; M S M; E M S; K O NA; A A S; K K
    Carbohydr Polym; 2014 Feb; 102():962-9. PubMed ID: 24507370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improve Production of Pullulanase of Bacillus subtilis in Batch and Fed-Batch Cultures.
    Meng F; Zhu X; Zhao H; Lu F; Lu Y; Lu Z
    Appl Biochem Biotechnol; 2021 Jan; 193(1):296-306. PubMed ID: 32954482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy.
    Zou C; Duan X; Wu J
    Bioresour Technol; 2014 Nov; 172():174-179. PubMed ID: 25261864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of pullulanase production in Bacillus cereus FDTA-13.
    Nair SU; Singhal RS; Kamat MY
    Bioresour Technol; 2007 Mar; 98(4):856-9. PubMed ID: 16697182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli.
    Duan X; Zou C; Wu J
    Bioresour Technol; 2015 Oct; 194():137-43. PubMed ID: 26188556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding.
    Zhang K; Su L; Wu J
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5089-5103. PubMed ID: 29675805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved production of an enzyme that hydrolyses raw yam starch by Penicillium sp. S-22 using fed-batch fermentation.
    Sun HY; Ge XY; Zhang WG
    Biotechnol Lett; 2006 Nov; 28(21):1719-23. PubMed ID: 16902845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of pullulanase production from recombinant Bacillus subtilis by optimization of feeding strategy and fermentation conditions.
    Zhang Y; Nie Y; Zhou X; Bi J; Xu Y
    AMB Express; 2020 Jan; 10(1):11. PubMed ID: 31955316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization.
    Gomes I; Gomes J; Steiner W
    Bioresour Technol; 2003 Nov; 90(2):207-14. PubMed ID: 12895565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis.
    Zou C; Duan X; Wu J
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):495-504. PubMed ID: 26707948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of cyclodextrin glycosyltransferase production from Klebsiella pneumoniae AS-22 in batch, fed-batch, and continuous cultures.
    Gawande BN; Sonawane AM; Jogdand VV; Patkar AY
    Biotechnol Prog; 2003; 19(6):1697-702. PubMed ID: 14656144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the DO-stat protocol for enhanced production of thermostable pullulanase in Escherichia coli by using oxygen control strategies.
    Chi L; Wei J; Hou J; Wang J; Hu X; He P; Wei T
    J Food Biochem; 2020 May; 44(5):e13173. PubMed ID: 32150658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control.
    Chen WB; Nie Y; Xu Y; Xiao R
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):601-8. PubMed ID: 23912330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fed-batch fermentation for the production of alpha-amylase by Bacillus amyloliquefaciens.
    Yoo YJ; Cadman TW; Hong J; Hatch RT
    Biotechnol Bioeng; 1988 Apr; 31(5):426-32. PubMed ID: 18584627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of co-immobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield.
    Atia KS; Ismail SA; El-Arnaouty MB; Dessouki AM
    Biotechnol Prog; 2003; 19(3):853-7. PubMed ID: 12790649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes.
    Duan X; Chen J; Wu J
    Bioresour Technol; 2013 Oct; 146():379-385. PubMed ID: 23948275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of maltotriose from fermentation broth by hydrolysis of pullulan using pullulanase.
    Wu SJ; Chen J
    Carbohydr Polym; 2014 Jul; 107():94-7. PubMed ID: 24702922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel pullulanase from a fungus Hypocrea jecorina QM9414: production and biochemical characterization.
    Orhan N; Kiymaz NA; Peksel A
    Indian J Biochem Biophys; 2014 Apr; 51(2):149-55. PubMed ID: 24980019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chromogenic assay for limit dextrinase and pullulanase activity.
    Bøjstrup M; Christensen CE; Windahl MS; Henriksen A; Hindsgaul O
    Anal Biochem; 2014 Mar; 449():45-51. PubMed ID: 24333247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pullulanase synthesis in klebsiella (aerobacter) aerogenes strains growing in continuous culture.
    Hope GC; Dean AC
    Biochem J; 1974 Nov; 144(2):403-11. PubMed ID: 4376962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.