These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24507490)

  • 1. Understanding the development and evolution of novel floral form in Aquilegia.
    Sharma B; Yant L; Hodges SA; Kramer EM
    Curr Opin Plant Biol; 2014 Feb; 17():22-7. PubMed ID: 24507490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development.
    Pabón-Mora N; Sharma B; Holappa LD; Kramer EM; Litt A
    Plant J; 2013 Apr; 74(2):197-212. PubMed ID: 23294330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia.
    Kramer EM; Holappa L; Gould B; Jaramillo MA; Setnikov D; Santiago PM
    Plant Cell; 2007 Mar; 19(3):750-66. PubMed ID: 17400892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Ballerini ES; Min Y; Edwards MB; Kramer EM; Hodges SA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22552-22560. PubMed ID: 32848061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub- and neo-functionalization of APETALA3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae).
    Sharma B; Kramer E
    New Phytol; 2013 Feb; 197(3):949-957. PubMed ID: 23278258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquilegia as a model system for the evolution and ecology of petals.
    Kramer EM; Hodges SA
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):477-90. PubMed ID: 20047874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis for three-dimensional elaboration of the Aquilegia petal spur.
    Yant L; Collani S; Puzey J; Levy C; Kramer EM
    Proc Biol Sci; 2015 Mar; 282(1803):20142778. PubMed ID: 25673682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis.
    Voelckel C; Borevitz JO; Kramer EM; Hodges SA
    PLoS One; 2010 Mar; 5(3):e9735. PubMed ID: 20352114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic basis for innovations in floral organ identity.
    Kramer EM; Jaramillo MA
    J Exp Zool B Mol Dev Evol; 2005 Nov; 304(6):526-35. PubMed ID: 15880769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.
    Yockteng R; Almeida AM; Morioka K; Alvarez-Buylla ER; Specht CD
    Mol Biol Evol; 2013 Nov; 30(11):2401-22. PubMed ID: 23938867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologs of the STYLISH gene family control nectary development in Aquilegia.
    Min Y; Bunn JI; Kramer EM
    New Phytol; 2019 Jan; 221(2):1090-1100. PubMed ID: 30145791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower development and evolution: gene duplication, diversification and redeployment.
    Irish VF; Litt A
    Curr Opin Genet Dev; 2005 Aug; 15(4):454-60. PubMed ID: 15964755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution.
    Sharma B; Guo C; Kong H; Kramer EM
    New Phytol; 2011 Aug; 191(3):870-883. PubMed ID: 21557746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Aquilegia Polycomb Repressive Complex 2 homologs reveals absence of imprinting.
    Gleason EJ; Kramer EM
    Gene; 2012 Oct; 507(1):54-60. PubMed ID: 22796128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquilegia: a new model for plant development, ecology, and evolution.
    Kramer EM
    Annu Rev Plant Biol; 2009; 60():261-77. PubMed ID: 19575583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex developmental and transcriptional dynamics underlie pollinator-driven evolutionary transitions in nectar spur morphology in Aquilegia (columbine).
    Edwards MB; Ballerini ES; Kramer EM
    Am J Bot; 2022 Sep; 109(9):1360-1381. PubMed ID: 35971626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation.
    Conway SJ; Walcher-Chevillet CL; Salome Barbour K; Kramer EM
    Ann Bot; 2021 Nov; 128(7):931-942. PubMed ID: 34508638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.