These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24507506)

  • 21. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS.
    Bey M; Stüber K; Fellenberg K; Schwarz-Sommer Z; Sommer H; Saedler H; Zachgo S
    Plant Cell; 2004 Dec; 16(12):3197-215. PubMed ID: 15539471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An expanded evolutionary role for flower symmetry genes.
    Hileman LC; Cubas P
    J Biol; 2009; 8(10):90. PubMed ID: 19895716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.
    Zhong J; Kellogg EA
    Am J Bot; 2015 Aug; 102(8):1260-7. PubMed ID: 26290549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A design principle for floral organ number and arrangement in flowers with bilateral symmetry.
    Nakagawa A; Kitazawa MS; Fujimoto K
    Development; 2020 Feb; 147(3):. PubMed ID: 31969326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linking floral symmetry genes to breeding system evolution.
    Kalisz S; Ree RH; Sargent RD
    Trends Plant Sci; 2006 Dec; 11(12):568-73. PubMed ID: 17097332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of genetic functions controlling organ identity in flowers.
    Keck E; McSteen P; Carpenter R; Coen E
    EMBO J; 2003 Mar; 22(5):1058-66. PubMed ID: 12606571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation and Shaping of the Antirrhinum Flower through Modulation of the CUP Boundary Gene.
    Rebocho AB; Kennaway JR; Bangham JA; Coen E
    Curr Biol; 2017 Sep; 27(17):2610-2622.e3. PubMed ID: 28867204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flower diversity and angiosperm diversification.
    Soltis PS; Soltis DE
    Methods Mol Biol; 2014; 1110():85-102. PubMed ID: 24395253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary paths underlying flower color variation in Antirrhinum.
    Whibley AC; Langlade NB; Andalo C; Hanna AI; Bangham A; Thébaud C; Coen E
    Science; 2006 Aug; 313(5789):963-6. PubMed ID: 16917061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple developmental processes underlie sex differentiation in angiosperms.
    Diggle PK; Di Stilio VS; Gschwend AR; Golenberg EM; Moore RC; Russell JR; Sinclair JP
    Trends Genet; 2011 Sep; 27(9):368-76. PubMed ID: 21962972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.
    Damerval C; Le Guilloux M; Jager M; Charon C
    Plant Physiol; 2007 Feb; 143(2):759-72. PubMed ID: 17189327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of regulatory interactions controlling floral asymmetry.
    Costa MM; Fox S; Hanna AI; Baxter C; Coen E
    Development; 2005 Nov; 132(22):5093-101. PubMed ID: 16236768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of Floret Symmetry by RAY3, SvDIV1B, and SvRAD in the Capitulum of Senecio vulgaris.
    Garcês HM; Spencer VM; Kim M
    Plant Physiol; 2016 Jul; 171(3):2055-68. PubMed ID: 27208229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of shape complexity through tissue conflict resolution.
    Rebocho AB; Southam P; Kennaway JR; Bangham JA; Coen E
    Elife; 2017 Feb; 6():. PubMed ID: 28166865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome structure and evolution of Antirrhinum majus L.
    Li M; Zhang D; Gao Q; Luo Y; Zhang H; Ma B; Chen C; Whibley A; Zhang Y; Cao Y; Li Q; Guo H; Li J; Song Y; Zhang Y; Copsey L; Li Y; Li X; Qi M; Wang J; Chen Y; Wang D; Zhao J; Liu G; Wu B; Yu L; Xu C; Li J; Zhao S; Zhang Y; Hu S; Liang C; Yin Y; Coen E; Xue Y
    Nat Plants; 2019 Feb; 5(2):174-183. PubMed ID: 30692677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae.
    Yang X; Zhao XG; Li CQ; Liu J; Qiu ZJ; Dong Y; Wang YZ
    Plant Physiol; 2015 Nov; 169(3):2138-51. PubMed ID: 26351309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development.
    Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z
    Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MADS-box genes and floral development: the dark side.
    Heijmans K; Morel P; Vandenbussche M
    J Exp Bot; 2012 Sep; 63(15):5397-404. PubMed ID: 22915743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.