These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24507611)

  • 1. Tethered particle motion reveals that LacI·DNA loops coexist with a competitor-resistant but apparently unlooped conformation.
    Revalee JD; Blab GA; Wilson HD; Kahn JD; Meiners JC
    Biophys J; 2014 Feb; 106(3):705-15. PubMed ID: 24507611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteins mediating DNA loops effectively block transcription.
    Vörös Z; Yan Y; Kovari DT; Finzi L; Dunlap D
    Protein Sci; 2017 Jul; 26(7):1427-1438. PubMed ID: 28295806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA modeling reveals an extended lac repressor conformation in classic in vitro binding assays.
    Hirsh AD; Lillian TD; Lionberger TA; Perkins NC
    Biophys J; 2011 Aug; 101(3):718-26. PubMed ID: 21806940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET.
    Goodson KA; Wang Z; Haeusler AR; Kahn JD; English DS
    J Phys Chem B; 2013 Apr; 117(16):4713-22. PubMed ID: 23406418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops.
    Xu W; Yan Y; Artsimovitch I; Dunlap D; Finzi L
    Nucleic Acids Res; 2022 Mar; 50(5):2826-2835. PubMed ID: 35188572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Internal Motion Likely Accelerates Protein Target Search in a Packed Nucleoid.
    Chow E; Skolnick J
    Biophys J; 2017 Jun; 112(11):2261-2270. PubMed ID: 28591599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion.
    Johnson S; van de Meent JW; Phillips R; Wiggins CH; Lindén M
    Nucleic Acids Res; 2014; 42(16):10265-77. PubMed ID: 25120267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtonewton entropic forces can control the formation of protein-mediated DNA loops.
    Chen YF; Milstein JN; Meiners JC
    Phys Rev Lett; 2010 Jan; 104(4):048301. PubMed ID: 20366742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetramer opening in LacI-mediated DNA looping.
    Rutkauskas D; Zhan H; Matthews KS; Pavone FS; Vanzi F
    Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16627-32. PubMed ID: 19805348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed hyperstable Lac repressor.DNA loop topologies suggest alternative loop geometries.
    Mehta RA; Kahn JD
    J Mol Biol; 1999 Nov; 294(1):67-77. PubMed ID: 10556029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer over approximately 130 basepairs in hyperstable lac repressor-DNA loops.
    Edelman LM; Cheong R; Kahn JD
    Biophys J; 2003 Feb; 84(2 Pt 1):1131-45. PubMed ID: 12547794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lac repressor hinge helix in context: The effect of the DNA binding domain and symmetry.
    Seckfort D; Lynch GC; Pettitt BM
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129538. PubMed ID: 31958546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of in-vivo LacR-mediated gene repression based on the mechanics of DNA looping.
    Zhang Y; McEwen AE; Crothers DM; Levene SD
    PLoS One; 2006 Dec; 1(1):e136. PubMed ID: 17205140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion.
    Vanzi F; Broggio C; Sacconi L; Pavone FS
    Nucleic Acids Res; 2006; 34(12):3409-20. PubMed ID: 16835309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles calculation of DNA looping in tethered particle experiments.
    Towles KB; Beausang JF; Garcia HG; Phillips R; Nelson PC
    Phys Biol; 2009 Jul; 6(2):025001. PubMed ID: 19571369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bead size effects on protein-mediated DNA looping in tethered-particle motion experiments.
    Milstein JN; Chen YF; Meiners JC
    Biopolymers; 2011 Feb; 95(2):144-50. PubMed ID: 20882535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.