BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24507614)

  • 1. Micromechanics of the vertebrate meiotic spindle examined by stretching along the pole-to-pole axis.
    Takagi J; Itabashi T; Suzuki K; Shimamoto Y; Kapoor TM; Ishiwata S
    Biophys J; 2014 Feb; 106(3):735-40. PubMed ID: 24507614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the micromechanical properties of the metaphase spindle.
    Shimamoto Y; Maeda YT; Ishiwata S; Libchaber AJ; Kapoor TM
    Cell; 2011 Jun; 145(7):1062-74. PubMed ID: 21703450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes.
    Lee J; Miyano T; Moor RM
    Biol Reprod; 2000 May; 62(5):1184-92. PubMed ID: 10775165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Distinct Microtubule Arrays Determine the Length and Force Response of the Meiotic Spindle.
    Takagi J; Sakamoto R; Shiratsuchi G; Maeda YT; Shimamoto Y
    Dev Cell; 2019 Apr; 49(2):267-278.e5. PubMed ID: 30982663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directly probing the mechanical properties of the spindle and its matrix.
    Gatlin JC; Matov A; Danuser G; Mitchison TJ; Salmon ED
    J Cell Biol; 2010 Feb; 188(4):481-9. PubMed ID: 20176922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of spindle poles are symmetrically balanced.
    Suzuki K; Itabashi T; Ishiwata S
    Biophys Physicobiol; 2017; 14():1-11. PubMed ID: 28409085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the mechanical architecture of the vertebrate meiotic spindle.
    Itabashi T; Takagi J; Shimamoto Y; Onoe H; Kuwana K; Shimoyama I; Gaetz J; Kapoor TM; Ishiwata S
    Nat Methods; 2009 Feb; 6(2):167-72. PubMed ID: 19151719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts.
    Shimamoto Y; Kapoor TM
    Nat Protoc; 2012 Apr; 7(5):959-69. PubMed ID: 22538847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assays to Study Mitotic Centrosome and Spindle Pole Assembly and Regulation.
    Joukov V; Walter JC; De Nicolo A
    Methods Mol Biol; 2016; 1413():207-35. PubMed ID: 27193852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization.
    Heald R; Tournebize R; Habermann A; Karsenti E; Hyman A
    J Cell Biol; 1997 Aug; 138(3):615-28. PubMed ID: 9245790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Op18 reveals the contribution of nonkinetochore microtubules to the dynamic organization of the vertebrate meiotic spindle.
    Houghtaling BR; Yang G; Matov A; Danuser G; Kapoor TM
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15338-43. PubMed ID: 19706424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active forces shape the metaphase spindle through a mechanical instability.
    Oriola D; Jülicher F; Brugués J
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16154-16159. PubMed ID: 32601228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using micromanipulation to analyze control of vertebrate meiotic spindle size.
    Takagi J; Itabashi T; Suzuki K; Kapoor TM; Shimamoto Y; Ishiwata S
    Cell Rep; 2013 Oct; 5(1):44-50. PubMed ID: 24120869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Intrinsic Tubulin Dynamic Properties Contribute to Spindle Length Control in Xenopus Species.
    Hirst WG; Biswas A; Mahalingan KK; Reber S
    Curr Biol; 2020 Jun; 30(11):2184-2190.e5. PubMed ID: 32386526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TPX2, A novel xenopus MAP involved in spindle pole organization.
    Wittmann T; Wilm M; Karsenti E; Vernos I
    J Cell Biol; 2000 Jun; 149(7):1405-18. PubMed ID: 10871281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic foundations of the metaphase II spindle of human oocytes matured in vivo and in vitro.
    Coticchio G; Guglielmo MC; Dal Canto M; Fadini R; Mignini Renzini M; De Ponti E; Brambillasca F; Albertini DF
    Hum Reprod; 2013 Dec; 28(12):3271-82. PubMed ID: 24129615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Xenopus spindle is as dense as the surrounding cytoplasm.
    Biswas A; Kim K; Cojoc G; Guck J; Reber S
    Dev Cell; 2021 Apr; 56(7):967-975.e5. PubMed ID: 33823135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A force balance model of early spindle pole separation in Drosophila embryos.
    Cytrynbaum EN; Scholey JM; Mogilner A
    Biophys J; 2003 Feb; 84(2 Pt 1):757-69. PubMed ID: 12547760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The radial positions of metaphase chromosomes may be a consequence of the relative strength of their interaction with the spindle and their size.
    Fletcher HL
    Chromosome Res; 1994 Jan; 2(1):21-4. PubMed ID: 8162316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.
    Takagi J; Itabashi T; Suzuki K; Ishiwata S
    Sci Rep; 2013 Sep; 3():2808. PubMed ID: 24077015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.