BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24507924)

  • 1. Inhibition of glutamate racemase by substrate-product analogues.
    Pal M; Bearne SL
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1432-6. PubMed ID: 24507924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of serine and proline racemases by substrate-product analogues.
    Harty M; Nagar M; Atkinson L; Legay CM; Derksen DJ; Bearne SL
    Bioorg Med Chem Lett; 2014 Jan; 24(1):390-3. PubMed ID: 24314397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-induced conformational changes in Bacillus subtilis glutamate racemase and their implications for drug discovery.
    Ruzheinikov SN; Taal MA; Sedelnikova SE; Baker PJ; Rice DW
    Structure; 2005 Nov; 13(11):1707-13. PubMed ID: 16271894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization.
    Mackie J; Kumar H; Bearne SL
    FEBS Lett; 2018 Oct; 592(20):3399-3413. PubMed ID: 30194685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic characterization and quaternary structure of glutamate racemase from the periodontal anaerobe Fusobacterium nucleatum.
    Potrykus J; Flemming J; Bearne SL
    Arch Biochem Biophys; 2009 Nov; 491(1-2):16-24. PubMed ID: 19772853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the substrate D-glutamate drives the catalytic action of Bacillus subtilis glutamate racemase.
    Puig E; Mixcoha E; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Am Chem Soc; 2009 Mar; 131(10):3509-21. PubMed ID: 19227983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for glutamate racemase inhibition.
    Kim KH; Bong YJ; Park JK; Shin KJ; Hwang KY; Kim EE
    J Mol Biol; 2007 Sep; 372(2):434-43. PubMed ID: 17658548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance mechanism to an uncompetitive inhibitor of a single-substrate, single-product enzyme: a study of Helicobacter pylori glutamate racemase.
    Keating TA
    Future Med Chem; 2013 Jul; 5(11):1203-14. PubMed ID: 23859203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of catalytic power and ligand binding in glutamate racemase.
    Spies MA; Reese JG; Dodd D; Pankow KL; Blanke SR; Baudry J
    J Am Chem Soc; 2009 Apr; 131(14):5274-84. PubMed ID: 19309142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme.
    Ashiuchi M; Soda K; Misono H
    Biosci Biotechnol Biochem; 1999 May; 63(5):792-8. PubMed ID: 10380621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and development of benzoxazole derivatives as novel bacterial glutamate racemase inhibitors.
    Malapati P; Krishna VS; Nallangi R; Srilakshmi RR; Sriram D
    Eur J Med Chem; 2018 Feb; 145():23-34. PubMed ID: 29310027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.
    Tamay-Cach F; Correa-Basurto J; Villa-Tanaca L; Mancilla-Percino T; Juárez-Montiel M; Trujillo-Ferrara JG
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):1026-33. PubMed ID: 22871135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico optimization of a fragment-based hit yields biologically active, high-efficiency inhibitors for glutamate racemase.
    Whalen KL; Chau AC; Spies MA
    ChemMedChem; 2013 Oct; 8(10):1681-9. PubMed ID: 23929705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis.
    Kimura K; Tran LP; Itoh Y
    Microbiology (Reading); 2004 Sep; 150(Pt 9):2911-2920. PubMed ID: 15347750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the Catalytic Power of Glutamate Racemase by Investigating a Series of Covalent Inhibitors.
    Vance NR; Witkin KR; Rooney PW; Li Y; Pope M; Spies MA
    ChemMedChem; 2018 Dec; 13(23):2514-2521. PubMed ID: 30264520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling and docking studies of glutamate racemase in Vibrio vulnificus CMCP6.
    Vidya N; Vadivukkarasi B; Manivannan G; Anbarasu K
    In Silico Biol; 2008; 8(5-6):471-83. PubMed ID: 19374132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing Substrates for the Bifunctional Diaminopimelic Acid Epimerase/Glutamate Racemase Modulate Peptidoglycan Synthesis in Chlamydia trachomatis.
    Singh R; Slade JA; Brockett M; Mendez D; Liechti GW; Maurelli AT
    Infect Immun; 2020 Dec; 89(1):. PubMed ID: 33106295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for an atypical active site of an L-aspartate/glutamate-specific racemase from Escherichia coli.
    Ahn JW; Chang JH; Kim KJ
    FEBS Lett; 2015 Dec; 589(24 Pt B):3842-7. PubMed ID: 26555188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of structural and regulatory diversity in glutamate racemases.
    Lundqvist T; Fisher SL; Kern G; Folmer RH; Xue Y; Newton DT; Keating TA; Alm RA; de Jonge BL
    Nature; 2007 Jun; 447(7146):817-22. PubMed ID: 17568739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of peptide ligands that inhibit glutamate racemase activity from a random phage display library.
    Kim WC; Rhee HI; Park BK; Suk KH; Cha SH
    J Biomol Screen; 2000 Dec; 5(6):435-40. PubMed ID: 11598461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.