BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24508077)

  • 1. Structure-dependent photothermal anticancer effects of carbon-based photoresponsive nanomaterials.
    Miao W; Shim G; Lee S; Oh YK
    Biomaterials; 2014 Apr; 35(13):4058-65. PubMed ID: 24508077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets.
    Miao W; Shim G; Kim G; Lee S; Lee HJ; Kim YB; Byun Y; Oh YK
    J Control Release; 2015 Aug; 211():28-36. PubMed ID: 26003041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.
    Yang K; Wan J; Zhang S; Tian B; Zhang Y; Liu Z
    Biomaterials; 2012 Mar; 33(7):2206-14. PubMed ID: 22169821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite.
    Hashida Y; Tanaka H; Zhou S; Kawakami S; Yamashita F; Murakami T; Umeyama T; Imahori H; Hashida M
    J Control Release; 2014 Jan; 173():59-66. PubMed ID: 24211651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes.
    Wang L; Shi J; Zhang H; Li H; Gao Y; Wang Z; Wang H; Li L; Zhang C; Chen C; Zhang Z; Zhang Y
    Biomaterials; 2013 Jan; 34(1):262-74. PubMed ID: 23046752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.
    Neelgund GM; Oki AR
    J Colloid Interface Sci; 2016 Dec; 484():135-145. PubMed ID: 27599382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene nanomesh promises extremely efficient in vivo photothermal therapy.
    Akhavan O; Ghaderi E
    Small; 2013 Nov; 9(21):3593-601. PubMed ID: 23625739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy.
    Neves LF; Krais JJ; Van Rite BD; Ramesh R; Resasco DE; Harrison RG
    Nanotechnology; 2013 Sep; 24(37):375104. PubMed ID: 23975064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH.
    Chen JL; Yan XP
    Chem Commun (Camb); 2011 Mar; 47(11):3135-7. PubMed ID: 21270983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy.
    Sahu A; Choi WI; Lee JH; Tae G
    Biomaterials; 2013 Aug; 34(26):6239-48. PubMed ID: 23706688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes.
    Lin Z; Liu Y; Ma X; Hu S; Zhang J; Wu Q; Ye W; Zhu S; Yang D; Qu D; Jiang J
    Sci Rep; 2015 Jun; 5():11709. PubMed ID: 26122018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite.
    Tao H; Yang K; Ma Z; Wan J; Zhang Y; Kang Z; Liu Z
    Small; 2012 Jan; 8(2):281-90. PubMed ID: 22095931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.
    Markovic ZM; Harhaji-Trajkovic LM; Todorovic-Markovic BM; Kepić DP; Arsikin KM; Jovanović SP; Pantovic AC; Dramićanin MD; Trajkovic VS
    Biomaterials; 2011 Feb; 32(4):1121-9. PubMed ID: 21071083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncovalent Ruthenium(II) Complexes-Single-Walled Carbon Nanotube Composites for Bimodal Photothermal and Photodynamic Therapy with Near-Infrared Irradiation.
    Zhang P; Huang H; Huang J; Chen H; Wang J; Qiu K; Zhao D; Ji L; Chao H
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23278-90. PubMed ID: 26430876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy.
    Antaris AL; Robinson JT; Yaghi OK; Hong G; Diao S; Luong R; Dai H
    ACS Nano; 2013 Apr; 7(4):3644-52. PubMed ID: 23521224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells.
    Marches R; Mikoryak C; Wang RH; Pantano P; Draper RK; Vitetta ES
    Nanotechnology; 2011 Mar; 22(9):095101. PubMed ID: 21258147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy.
    Tang S; Chen M; Zheng N
    Small; 2014 Aug; 10(15):3139-44. PubMed ID: 24729448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy.
    Yin W; Yan L; Yu J; Tian G; Zhou L; Zheng X; Zhang X; Yong Y; Li J; Gu Z; Zhao Y
    ACS Nano; 2014 Jul; 8(7):6922-33. PubMed ID: 24905027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.