These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24508091)

  • 1. Additives initiate selective production of chemicals from biomass pyrolysis.
    Leng S; Wang X; Wang L; Qiu H; Zhuang G; Zhong X; Wang J; Ma F; Liu J; Wang Q
    Bioresour Technol; 2014 Mar; 156():376-9. PubMed ID: 24508091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.
    Leng S; Wang X; Cai Q; Ma F; Liu Y; Wang J
    Bioresour Technol; 2013 Dec; 149():341-5. PubMed ID: 24128395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor.
    Oh SJ; Jung SH; Kim JS
    Bioresour Technol; 2013 Sep; 144():172-8. PubMed ID: 23867536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.
    Zhang H; Liu X; Lu M; Hu X; Lu L; Tian X; Ji J
    Bioresour Technol; 2014 Oct; 169():800-803. PubMed ID: 25106779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products.
    Ghorbannezhad P; Park S; Onwudili JA
    Waste Manag; 2020 Feb; 102():909-918. PubMed ID: 31841983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex-situ catalytic fast pyrolysis of biomass over HZSM-5 in a two-stage fluidized-bed/fixed-bed combination reactor.
    Hu C; Xiao R; Zhang H
    Bioresour Technol; 2017 Nov; 243():1133-1140. PubMed ID: 28764127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.
    Zhang H; Xiao R; Jin B; Xiao G; Chen R
    Bioresour Technol; 2013 Jul; 140():256-62. PubMed ID: 23707913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.
    Santhanaraj D; Rover MR; Resasco DE; Brown RC; Crossley S
    ChemSusChem; 2014 Nov; 7(11):3132-7. PubMed ID: 25204798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass.
    Dai L; Wang Y; Liu Y; He C; Ruan R; Yu Z; Jiang L; Zeng Z; Wu Q
    Sci Total Environ; 2020 Dec; 749():142386. PubMed ID: 33370899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corncob pyrolysis: Improvement in hydrocarbon group types distribution of bio oil from co-catalysis over HZSM-5 and activated carbon.
    Duan D; Feng Z; Zhang Y; Zhou T; Xu Z; Wang Q; Zhao Y; Wang C; Ruan R
    Waste Manag; 2022 Mar; 141():8-15. PubMed ID: 35085868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass.
    Zhao Y; Fu Y; Guo QX
    Bioresour Technol; 2012 Jun; 114():740-4. PubMed ID: 22507905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic fast pyrolysis of waste mixed cloth for the production of value-added chemicals.
    Zhang J; Gu J; Yuan H; Chen Y
    Waste Manag; 2021 May; 127():141-146. PubMed ID: 33933871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted pyrolysis of biomass for liquid biofuels production.
    Yin C
    Bioresour Technol; 2012 Sep; 120():273-84. PubMed ID: 22771019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts.
    Veses A; Aznar M; Martínez I; Martínez JD; López JM; Navarro MV; Callén MS; Murillo R; García T
    Bioresour Technol; 2014 Jun; 162():250-8. PubMed ID: 24759640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic upgrading of oil fractions separated from food waste leachate.
    Heo HS; Kim SG; Jeong KE; Jeon JK; Park SH; Kim JM; Kim SS; Park YK
    Bioresour Technol; 2011 Feb; 102(4):3952-7. PubMed ID: 21177101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.
    Xie Q; Kong S; Liu Y; Zeng H
    Bioresour Technol; 2012 Apr; 110():603-9. PubMed ID: 22342084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5.
    Chen L; Ma X; Tang F; Li Y; Yu Z; Chen X
    Bioresour Technol; 2020 Sep; 312():123592. PubMed ID: 32531734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process design and simulation of H2-rich gases production from biomass pyrolysis process.
    Li C; Suzuki K
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S86-90. PubMed ID: 19523817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile.
    Zhang X; Yuan Z; Yao Q; Zhang Y; Fu Y
    Bioresour Technol; 2019 Oct; 290():121800. PubMed ID: 31319216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.