These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24508490)

  • 1. Investigation of sonochemical activities at a frequency of 334 kHz: the effect of geometric parameters of sonoreactor.
    Kim E; Cui M; Jang M; Park B; Son Y; Khim J
    Ultrason Sonochem; 2014 Jul; 21(4):1504-11. PubMed ID: 24508490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of liquid height/volume, initial concentration of reactant and acoustic power on sonochemical oxidation.
    Lim M; Ashokkumar M; Son Y
    Ultrason Sonochem; 2014 Nov; 21(6):1988-93. PubMed ID: 24690295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of liquid recirculation flow on sonochemical oxidation activity in a 28 kHz sonoreactor.
    Lee D; Na I; Son Y
    Chemosphere; 2022 Jan; 286(Pt 2):131780. PubMed ID: 34358887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic emission spectra and sonochemical activity in a 36 kHz sonoreactor.
    Son Y; Lim M; Khim J; Ashokkumar M
    Ultrason Sonochem; 2012 Jan; 19(1):16-21. PubMed ID: 21705256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric and operational optimization of 20-kHz probe-type sonoreactor for enhancing sonochemical activity.
    Son Y; No Y; Kim J
    Ultrason Sonochem; 2020 Jul; 65():105065. PubMed ID: 32199254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of sonochemical oxidation reactions using air sparging in a 36 kHz sonoreactor.
    Choi J; Khim J; Neppolian B; Son Y
    Ultrason Sonochem; 2019 Mar; 51():412-418. PubMed ID: 30060989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of acoustic and geometric effects on the sonoreactor performance.
    Rashwan SS; Dincer I; Mohany A
    Ultrason Sonochem; 2020 Nov; 68():105174. PubMed ID: 32505100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 2. Fluid circulation at high frequencies.
    Bussemaker MJ; Zhang D
    Ultrason Sonochem; 2014 Mar; 21(2):485-92. PubMed ID: 24134828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor.
    de La Rochebrochard S; Suptil J; Blais JF; Naffrechoux E
    Ultrason Sonochem; 2012 Mar; 19(2):280-5. PubMed ID: 21873099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of acoustic cavitation energy in a large-scale sonoreactor.
    Son Y; Lim M; Khim J
    Ultrason Sonochem; 2009 Apr; 16(4):552-6. PubMed ID: 19144557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 1. Overhead stirring.
    Bussemaker MJ; Zhang D
    Ultrason Sonochem; 2014 Jan; 21(1):436-45. PubMed ID: 23899480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.
    Kobayashi D; Honma C; Matsumoto H; Takahashi T; Kuroda C; Otake K; Shono A
    Ultrason Sonochem; 2014 Jul; 21(4):1489-95. PubMed ID: 24439912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of liquid velocity distribution in a sonochemical reactor.
    Xu Z; Yasuda K; Koda S
    Ultrason Sonochem; 2013 Jan; 20(1):452-9. PubMed ID: 22634380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of gas saturation and sparging on sonochemical oxidation activity in open and closed systems, Part I: H
    Son Y; Seo J
    Ultrason Sonochem; 2022 Nov; 90():106214. PubMed ID: 36327919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions.
    Wood RJ; Lee J; Bussemaker MJ
    Ultrason Sonochem; 2017 Sep; 38():351-370. PubMed ID: 28633836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production.
    Merouani S; Hamdaoui O; Saoudi F; Chiha M
    J Hazard Mater; 2010 Jun; 178(1-3):1007-14. PubMed ID: 20211524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of gas sparging and mechanical mixing on sonochemical oxidation activity.
    Choi J; Lee H; Son Y
    Ultrason Sonochem; 2021 Jan; 70():105334. PubMed ID: 32932226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of sonochemical and sonophysical effects in a 20 kHz probe-type sonoreactor: Enhancing sonophysical effects in heterogeneous systems with milli-sized particles.
    Choi J; Son Y
    Ultrason Sonochem; 2022 Jan; 82():105888. PubMed ID: 34953385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A calorimetric study of energy conversion efficiency of a sonochemical reactor at 500 kHz for organic solvents.
    Toma M; Fukutomi S; Asakura Y; Koda S
    Ultrason Sonochem; 2011 Jan; 18(1):197-208. PubMed ID: 20655791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of liquid-surface vibration on sonochemiluminescence intensity.
    Tuziuti T; Yasui K; Kozuka T; Towata A
    J Phys Chem A; 2010 Jul; 114(27):7321-5. PubMed ID: 20553009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.