BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24508528)

  • 1. Optimising the assessment of cerebral autoregulation from black box models.
    Angarita-Jaimes N; Kouchakpour H; Liu J; Panerai RB; Simpson DM
    Med Eng Phys; 2014 May; 36(5):607-12. PubMed ID: 24508528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation.
    Liu J; Simpson DM; Allen R
    Physiol Meas; 2005 Oct; 26(5):725-41. PubMed ID: 16088064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear models for the detection of impaired cerebral blood flow autoregulation.
    Chacón M; Jara JL; Miranda R; Katsogridakis E; Panerai RB
    PLoS One; 2018; 13(1):e0191825. PubMed ID: 29381724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
    Kostoglou K; Debert CT; Poulin MJ; Mitsis GD
    Med Eng Phys; 2014 May; 36(5):592-600. PubMed ID: 24291338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral autoregulation: from models to clinical applications.
    Panerai RB
    Cardiovasc Eng; 2008 Mar; 8(1):42-59. PubMed ID: 18041584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.
    Placek MM; Wachel P; Iskander DR; Smielewski P; Uryga A; Mielczarek A; Szczepański TA; Kasprowicz M
    PLoS One; 2017; 12(7):e0181851. PubMed ID: 28750024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow.
    Meel-van den Abeelen AS; van Beek AH; Slump CH; Panerai RB; Claassen JA
    Med Eng Phys; 2014 May; 36(5):563-75. PubMed ID: 24721458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior Fitting of Arterial Resistance and Compliance Parameters With Genetic Algorithms in Models of Dynamic Cerebral Autoregulation.
    Robles FB; Panerai RB; Katsogridakis E; Chacon M
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):503-512. PubMed ID: 34314353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of cerebral blood flow autoregulation in neonates.
    Panerai RB; Kelsall AW; Rennie JM; Evans DH
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):779-88. PubMed ID: 9216150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visually evoked blood flow responses and interaction with dynamic cerebral autoregulation: correction for blood pressure variation.
    Gommer ED; Bogaarts G; Martens EG; Mess WH; Reulen JP
    Med Eng Phys; 2014 May; 36(5):613-9. PubMed ID: 24507691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valsalva maneuver suggests increased rigidity of cerebral resistance vessels in familial dysautonomia.
    Hilz MJ; Axelrod FB; Steingrueber M; Stemper B
    Clin Auton Res; 2002 Oct; 12(5):385-92. PubMed ID: 12420084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebrovascular reactivity and cerebral autoregulation in normal subjects.
    Carrera E; Lee LK; Giannopoulos S; Marshall RS
    J Neurol Sci; 2009 Oct; 285(1-2):191-4. PubMed ID: 19608202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation.
    Chacón M; Nuñez N; Henríquez C; Panerai RB
    Physiol Meas; 2008 Oct; 29(10):1179-93. PubMed ID: 18799835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear, multiple-input modeling of cerebral autoregulation using Volterra Kernel estimation.
    Kouchakpour H; Allen R; Simpson DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2375-8. PubMed ID: 21096582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability.
    Katsogridakis E; Bush G; Fan L; Birch AA; Simpson DM; Allen R; Potter JF; Panerai RB
    J Cereb Blood Flow Metab; 2013 Apr; 33(4):519-23. PubMed ID: 23232946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation.
    Katsogridakis E; Bush G; Fan L; Birch AA; Simpson DM; Allen R; Potter JF; Panerai RB
    Physiol Meas; 2012 Feb; 33(2):103-16. PubMed ID: 22227772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral autoregulation and ageing.
    Yam AT; Lang EW; Lagopoulos J; Yip K; Griffith J; Mudaliar Y; Dorsch NW
    J Clin Neurosci; 2005 Aug; 12(6):643-6. PubMed ID: 16098757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial Doppler assessment of cerebral autoregulation.
    Bellapart J; Fraser JF
    Ultrasound Med Biol; 2009 Jun; 35(6):883-93. PubMed ID: 19329245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.