These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24508528)

  • 41. Nonstationarity of dynamic cerebral autoregulation.
    Panerai RB
    Med Eng Phys; 2014 May; 36(5):576-84. PubMed ID: 24113077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linear and nonlinear modeling of cerebral flow autoregulation using principal dynamic modes.
    Marmarelis V; Shin D; Zhang R
    Open Biomed Eng J; 2012; 6():42-55. PubMed ID: 22723806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered Phase Interactions between Spontaneous Blood Pressure and Flow Fluctuations in Type 2 Diabetes Mellitus: Nonlinear Assessment of Cerebral Autoregulation.
    Hu K; Peng CK; Huang NE; Wu Z; Lipsitz LA; Cavallerano J; Novak V
    Physica A; 2008 Apr; 387(10):2279-2292. PubMed ID: 18432311
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic effects of cholinergic blockade upon cerebral blood flow autoregulation in healthy adults.
    Marmarelis VZ; Shin DC; Hamner JW; Tan CO
    Front Physiol; 2022; 13():1015544. PubMed ID: 36406984
    [No Abstract]   [Full Text] [Related]  

  • 45. Special issue on cerebral autoregulation: measurement and modelling.
    Mitsis GD; Simpson DM
    Med Eng Phys; 2014 May; 36(5):561-2. PubMed ID: 24637098
    [No Abstract]   [Full Text] [Related]  

  • 46. [Average arterial pressure: normal and stimulated values].
    Lecomte J
    Rev Med Liege; 1976 Oct; 31(20):615-21. PubMed ID: 1019477
    [No Abstract]   [Full Text] [Related]  

  • 47. Quantification of dynamic cerebral autoregulation: welcome to the jungle!
    Brassard P; Roy MA; Burma JS; Labrecque L; Smirl JD
    Clin Auton Res; 2023 Dec; 33(6):791-810. PubMed ID: 37758907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update.
    Panerai RB; Brassard P; Burma JS; Castro P; Claassen JA; van Lieshout JJ; Liu J; Lucas SJ; Minhas JS; Mitsis GD; Nogueira RC; Ogoh S; Payne SJ; Rickards CA; Robertson AD; Rodrigues GD; Smirl JD; Simpson DM;
    J Cereb Blood Flow Metab; 2023 Jan; 43(1):3-25. PubMed ID: 35962478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reliability and validity of the mean flow index (Mx) for assessing cerebral autoregulation in humans: A systematic review of the methodology.
    Olsen MH; Riberholt CG; Mehlsen J; Berg RM; Møller K
    J Cereb Blood Flow Metab; 2022 Jan; 42(1):27-38. PubMed ID: 34617816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke.
    Simpson DM; Payne SJ; Panerai RB
    J Cereb Blood Flow Metab; 2022 Mar; 42(3):411-429. PubMed ID: 34279146
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterisation of ictal and interictal states of epilepsy: A system dynamic approach of principal dynamic modes analysis.
    Hameed Z; Saleem S; Mirza J; Mustafa MS; Qamar-Ul-Islam
    PLoS One; 2018; 13(1):e0191392. PubMed ID: 29351559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of Impaired Sympathetic Cerebrovascular Control Using Functional Biomarkers Based on Principal Dynamic Mode Analysis.
    Saleem S; Tzeng YC; Kleijn WB; Teal PD
    Front Physiol; 2016; 7():685. PubMed ID: 28119628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-linear models for the detection of impaired cerebral blood flow autoregulation.
    Chacón M; Jara JL; Miranda R; Katsogridakis E; Panerai RB
    PLoS One; 2018; 13(1):e0191825. PubMed ID: 29381724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.
    Kostoglou K; Debert CT; Poulin MJ; Mitsis GD
    Med Eng Phys; 2014 May; 36(5):592-600. PubMed ID: 24291338
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerebral autoregulation: from models to clinical applications.
    Panerai RB
    Cardiovasc Eng; 2008 Mar; 8(1):42-59. PubMed ID: 18041584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow.
    Meel-van den Abeelen AS; van Beek AH; Slump CH; Panerai RB; Claassen JA
    Med Eng Phys; 2014 May; 36(5):563-75. PubMed ID: 24721458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimising the assessment of cerebral autoregulation from black box models.
    Angarita-Jaimes N; Kouchakpour H; Liu J; Panerai RB; Simpson DM
    Med Eng Phys; 2014 May; 36(5):607-12. PubMed ID: 24508528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation.
    Liu J; Simpson DM; Allen R
    Physiol Meas; 2005 Oct; 26(5):725-41. PubMed ID: 16088064
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.