BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24508530)

  • 1. Regulation of mesodermal precursor production by low-level expression of B1 Sox genes in the caudal lateral epiblast.
    Yoshida M; Uchikawa M; Rizzoti K; Lovell-Badge R; Takemoto T; Kondoh H
    Mech Dev; 2014 May; 132():59-68. PubMed ID: 24508530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells.
    Takemoto T; Uchikawa M; Yoshida M; Bell DM; Lovell-Badge R; Papaioannou VE; Kondoh H
    Nature; 2011 Feb; 470(7334):394-8. PubMed ID: 21331042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features.
    Uchikawa M; Yoshida M; Iwafuchi-Doi M; Matsuda K; Ishida Y; Takemoto T; Kondoh H
    Dev Growth Differ; 2011 Aug; 53(6):761-71. PubMed ID: 21762129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pou5f1/Pou3f-dependent but SoxB-independent regulation of conserved enhancer N2 initiates Sox2 expression during epiblast to neural plate stages in vertebrates.
    Iwafuchi-Doi M; Yoshida Y; Onichtchouk D; Leichsenring M; Driever W; Takemoto T; Uchikawa M; Kamachi Y; Kondoh H
    Dev Biol; 2011 Apr; 352(2):354-66. PubMed ID: 21185279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of cell fate choice between neural and mesodermal development during early embryogenesis.
    Takemoto T
    Congenit Anom (Kyoto); 2013 Jun; 53(2):61-6. PubMed ID: 23751038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial stem cells deriving both posterior neural and mesodermal tissues during gastrulation.
    Kondoh H; Takemoto T
    Curr Opin Genet Dev; 2012 Aug; 22(4):374-80. PubMed ID: 22575683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells.
    Iwafuchi-Doi M; Matsuda K; Murakami K; Niwa H; Tesar PJ; Aruga J; Matsuo I; Kondoh H
    Development; 2012 Nov; 139(21):3926-37. PubMed ID: 22992956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An epiblast stem cell-derived multipotent progenitor population for axial extension.
    Edri S; Hayward P; Baillie-Johnson P; Steventon BJ; Martinez Arias A
    Development; 2019 May; 146(10):. PubMed ID: 31023877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.
    Kondoh H; Takada S; Takemoto T
    Dev Growth Differ; 2016 Jun; 58(5):427-36. PubMed ID: 27279156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones.
    Wang TW; Stromberg GP; Whitney JT; Brower NW; Klymkowsky MW; Parent JM
    J Comp Neurol; 2006 Jul; 497(1):88-100. PubMed ID: 16680766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.
    Hutchins AP; Choo SH; Mistri TK; Rahmani M; Woon CT; Ng CK; Jauch R; Robson P
    Stem Cells; 2013 Feb; 31(2):269-81. PubMed ID: 23169531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers.
    Nishimura N; Kamimura Y; Ishida Y; Takemoto T; Kondoh H; Uchikawa M
    Biology (Basel); 2012 Nov; 1(3):714-35. PubMed ID: 24832516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse agonism of retinoic acid receptors directs epiblast cells into the paraxial mesoderm lineage.
    Russell RP; Fu Y; Liu Y; Maye P
    Stem Cell Res; 2018 Jul; 30():85-95. PubMed ID: 29807258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes.
    Kamachi Y; Iwafuchi M; Okuda Y; Takemoto T; Uchikawa M; Kondoh H
    Proc Jpn Acad Ser B Phys Biol Sci; 2009; 85(2):55-68. PubMed ID: 19212098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoic Acid Activity in Undifferentiated Neural Progenitors Is Sufficient to Fulfill Its Role in Restricting Fgf8 Expression for Somitogenesis.
    Cunningham TJ; Brade T; Sandell LL; Lewandoski M; Trainor PA; Colas A; Mercola M; Duester G
    PLoS One; 2015; 10(9):e0137894. PubMed ID: 26368825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of chicken Paraxis: a regulator of paraxial mesoderm development and somite formation.
    Barnes GL; Alexander PG; Hsu CW; Mariani BD; Tuan RS
    Dev Biol; 1997 Sep; 189(1):95-111. PubMed ID: 9281340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors.
    Koch F; Scholze M; Wittler L; Schifferl D; Sudheer S; Grote P; Timmermann B; Macura K; Herrmann BG
    Dev Cell; 2017 Sep; 42(5):514-526.e7. PubMed ID: 28826820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced pluripotent stem cells expressing elevated levels of sox-2, oct-4, and klf-4 are severely reduced in their differentiation from mesodermal to hematopoietic progenitor cells.
    Seiler K; Soroush Noghabi M; Karjalainen K; Hummel M; Melchers F; Tsuneto M
    Stem Cells Dev; 2011 Jul; 20(7):1131-42. PubMed ID: 21348597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct SoxB1 networks are required for naïve and primed pluripotency.
    Corsinotti A; Wong FC; Tatar T; Szczerbinska I; Halbritter F; Colby D; Gogolok S; Pantier R; Liggat K; Mirfazeli ES; Hall-Ponsele E; Mullin NP; Wilson V; Chambers I
    Elife; 2017 Dec; 6():. PubMed ID: 29256862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse Routes toward Early Somites in the Mouse Embryo.
    Guibentif C; Griffiths JA; Imaz-Rosshandler I; Ghazanfar S; Nichols J; Wilson V; Göttgens B; Marioni JC
    Dev Cell; 2021 Jan; 56(1):141-153.e6. PubMed ID: 33308481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.