These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24508543)

  • 1. Liquid crystal based sensors monitoring lipase activity: a new rapid and sensitive method for cytotoxicity assays.
    Hussain Z; Zafiu C; Küpcü S; Pivetta L; Hollfelder N; Masutani A; Kilickiran P; Sinner EK
    Biosens Bioelectron; 2014 Jun; 56():210-6. PubMed ID: 24508543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple strategy to monitor lipase activity using liquid crystal-based sensors.
    Hu QZ; Jang CH
    Talanta; 2012 Sep; 99():36-9. PubMed ID: 22967518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A liquid crystal-based sensor for real-time and label-free identification of phospholipase-like toxins and their inhibitors.
    Hartono D; Lai SL; Yang KL; Yung LY
    Biosens Bioelectron; 2009 Mar; 24(7):2289-93. PubMed ID: 19162466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer.
    Zhang M; Jang CH
    Anal Biochem; 2014 Jun; 455():13-9. PubMed ID: 24708935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor.
    Wang Y; Hu Q; Guo Y; Yu L
    Biosens Bioelectron; 2015 Oct; 72():25-30. PubMed ID: 25957073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer.
    Hu QZ; Jang CH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1791-5. PubMed ID: 22394113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer.
    Zhang M; Jang CH
    Chemphyschem; 2014 Aug; 15(12):2569-74. PubMed ID: 24850496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid-graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity.
    Liu SJ; Wen Q; Tang LJ; Jiang JH
    Anal Chem; 2012 Jul; 84(14):5944-50. PubMed ID: 22746286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical monitoring of anchoring change in vertically aligned thin liquid crystal film for chemical and biological sensor.
    Zou Y; Namkung J; Lin Y; Lindquist R
    Appl Opt; 2010 Apr; 49(10):1865-9. PubMed ID: 20357871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging the disruption of phospholipid monolayer by protein-coated nanoparticles using ordering transitions of liquid crystals.
    Hartono D; Qin WJ; Yang KL; Yung LY
    Biomaterials; 2009 Feb; 30(5):843-9. PubMed ID: 19027155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease.
    Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):622-6. PubMed ID: 21846586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic sensing devices employing in situ-formed liquid crystal thin film for detection of biochemical interactions.
    Liu Y; Cheng D; Lin IH; Abbott NL; Jiang H
    Lab Chip; 2012 Oct; 12(19):3746-53. PubMed ID: 22842797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and sensitive detection of lipase using a liquid crystal microfiber biosensor based on the whispering-gallery mode.
    Duan R; Li Y; He Y; Yuan Y; Li H
    Analyst; 2020 Nov; 145(23):7595-7602. PubMed ID: 32975244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Application of Liquid Crystals as Stimuli-Responsive Sensors.
    Oladepo SA
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose sensor using liquid-crystal droplets made by microfluidics.
    Kim J; Khan M; Park SY
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13135-9. PubMed ID: 24251831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeotropic orientation behavior of nematic liquid crystals induced by copper ions.
    Li G; Gao B; Yang M; Chen LC; Xiong XL
    Colloids Surf B Biointerfaces; 2015 Jun; 130():287-91. PubMed ID: 25935262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using liquid crystals for the label-free detection of catalase at aqueous-LC interfaces.
    Hu QZ; Jang CH
    J Biotechnol; 2012 Jan; 157(1):223-7. PubMed ID: 22138010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides.
    Bao P; Paterson DA; Harrison PL; Miller K; Peyman S; Jones JC; Sandoe J; Evans SD; Bushby RJ; Gleeson HF
    Lab Chip; 2019 Mar; 19(6):1082-1089. PubMed ID: 30785139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid crystals as optical amplifiers for bacterial detection.
    Zafiu C; Hussain Z; Küpcü S; Masutani A; Kilickiran P; Sinner EK
    Biosens Bioelectron; 2016 Jun; 80():161-170. PubMed ID: 26827146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordering transitions triggered by specific binding of vesicles to protein-decorated interfaces of thermotropic liquid crystals.
    Tan LN; Orler VJ; Abbott NL
    Langmuir; 2012 Apr; 28(15):6364-76. PubMed ID: 22372743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.