These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 24508546)

  • 21. A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification.
    Zhang J; Chai Y; Yuan R; Yuan Y; Bai L; Xie S
    Analyst; 2013 Nov; 138(22):6938-45. PubMed ID: 24081001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A reusable aptasensor of thrombin based on DNA machine employing resonance light scattering technique.
    Hou Y; Liu J; Hong M; Li X; Ma Y; Yue Q; Li CZ
    Biosens Bioelectron; 2017 Jun; 92():259-265. PubMed ID: 28231553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation.
    Wang L; Li L; Xu Y; Cheng G; He P; Fang Y
    Talanta; 2009 Aug; 79(3):557-61. PubMed ID: 19576412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method for the detection of adenosine based on time-resolved fluorescence sensor.
    Zhang K; Wang K; Xie M; Xu L; Zhu X; Pan S; Zhang Q; Huang B
    Biosens Bioelectron; 2013 Nov; 49():226-30. PubMed ID: 23770393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Planar Hall magnetoresistive aptasensor for thrombin detection.
    Sinha B; Ramulu TS; Kim KW; Venu R; Lee JJ; Kim CG
    Biosens Bioelectron; 2014 Sep; 59():140-4. PubMed ID: 24727201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An aptamer-based biosensor for sensitive thrombin detection with phthalocyanine@SiO2 mesoporous nanoparticles.
    Jiang Z; Yang T; Liu M; Hu Y; Wang J
    Biosens Bioelectron; 2014 Mar; 53():340-5. PubMed ID: 24176970
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles.
    Ding C; Ge Y; Lin JM
    Biosens Bioelectron; 2010 Feb; 25(6):1290-4. PubMed ID: 19914815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B
    Ye H; Lu Q; Duan N; Wang Z
    Anal Bioanal Chem; 2019 Feb; 411(5):1107-1115. PubMed ID: 30612175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aptamer-linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection.
    Zhao Q; Lu X; Yuan CG; Li XF; Le XC
    Anal Chem; 2009 Sep; 81(17):7484-9. PubMed ID: 19670869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles.
    Xie L; You L; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():110-5. PubMed ID: 23501724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe.
    Zhang J; Chen P; Wu X; Chen J; Xu L; Chen G; Fu F
    Biosens Bioelectron; 2011 Jan; 26(5):2645-50. PubMed ID: 21146976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free protein recognition using aptamer-based fluorescence assay.
    Jin Y; Bai J; Li H
    Analyst; 2010 Jul; 135(7):1731-5. PubMed ID: 20467654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin.
    Jiao XX; Chen JR; Zhang XY; Luo HQ; Li NB
    Anal Biochem; 2013 Oct; 441(2):95-100. PubMed ID: 23896460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An aptamer-based single particle method for sensitive detection of thrombin using fluorescent quantum dots as labeling probes.
    Yin J; Zhang A; Dong C; Ren J
    Talanta; 2015 Nov; 144():13-9. PubMed ID: 26452786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.
    Lu L; Qian Y; Wang L; Ma K; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1944-50. PubMed ID: 24480015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun polystyrene-poly(styrene-co-maleic anhydride) nanofiber as a new aptasensor platform.
    Lee SJ; Tatavarty R; Gu MB
    Biosens Bioelectron; 2012; 38(1):302-7. PubMed ID: 22776178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reusable and sensitive biosensor for total mercury in canned fish based on fluorescence polarization.
    Shen T; Yue Q; Jiang X; Wang L; Xu S; Li H; Gu X; Zhang S; Liu J
    Talanta; 2013 Dec; 117():81-6. PubMed ID: 24209314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin.
    Xu N; Wang Q; Lei J; Liu L; Ju H
    Talanta; 2015 Jan; 132():387-91. PubMed ID: 25476322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter.
    Cai L; Chen ZZ; Dong XM; Tang HW; Pang DW
    Biosens Bioelectron; 2011 Nov; 29(1):46-52. PubMed ID: 21903375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules.
    Zhao Q; Cheng L
    Anal Bioanal Chem; 2013 Oct; 405(25):8233-9. PubMed ID: 23912830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.