These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 24508715)
1. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. Luisier B; Dall'Ara E; Pahr DH J Mech Behav Biomed Mater; 2014 Apr; 32():287-299. PubMed ID: 24508715 [TBL] [Abstract][Full Text] [Related]
2. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations. Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112 [TBL] [Abstract][Full Text] [Related]
3. Fast estimation of Colles' fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT. Hosseini HS; Dünki A; Fabech J; Stauber M; Vilayphiou N; Pahr D; Pretterklieber M; Wandel J; Rietbergen BV; Zysset PK Bone; 2017 Apr; 97():65-75. PubMed ID: 28069517 [TBL] [Abstract][Full Text] [Related]
4. Clinical versus pre-clinical FE models for vertebral body strength predictions. Pahr DH; Schwiedrzik J; Dall'Ara E; Zysset PK J Mech Behav Biomed Mater; 2014 May; 33():76-83. PubMed ID: 23333770 [TBL] [Abstract][Full Text] [Related]
5. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Dall'Ara E; Luisier B; Schmidt R; Kainberger F; Zysset P; Pahr D Bone; 2013 Jan; 52(1):27-38. PubMed ID: 22985891 [TBL] [Abstract][Full Text] [Related]
6. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Dall'Ara E; Pahr D; Varga P; Kainberger F; Zysset P Osteoporos Int; 2012 Feb; 23(2):563-72. PubMed ID: 21344244 [TBL] [Abstract][Full Text] [Related]
7. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361 [TBL] [Abstract][Full Text] [Related]
8. Identification of a crushable foam material model and application to strength and damage prediction of human femur and vertebral body. Kinzl M; Wolfram U; Pahr DH J Mech Behav Biomed Mater; 2013 Oct; 26():136-47. PubMed ID: 23768961 [TBL] [Abstract][Full Text] [Related]
9. Experimental validation of DXA-based finite element models for prediction of femoral strength. Dall'Ara E; Eastell R; Viceconti M; Pahr D; Yang L J Mech Behav Biomed Mater; 2016 Oct; 63():17-25. PubMed ID: 27341287 [TBL] [Abstract][Full Text] [Related]
10. Femur strength predictions by nonlinear homogenized voxel finite element models reflect the microarchitecture of the femoral neck. Iori G; Peralta L; Reisinger A; Heyer F; Wyers C; van den Bergh J; Pahr D; Raum K Med Eng Phys; 2020 May; 79():60-66. PubMed ID: 32291201 [TBL] [Abstract][Full Text] [Related]
11. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321 [TBL] [Abstract][Full Text] [Related]
12. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Zysset P; Pahr D; Engelke K; Genant HK; McClung MR; Kendler DL; Recknor C; Kinzl M; Schwiedrzik J; Museyko O; Wang A; Libanati C Bone; 2015 Dec; 81():122-130. PubMed ID: 26141837 [TBL] [Abstract][Full Text] [Related]
13. Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Enns-Bray WS; Ariza O; Gilchrist S; Widmer Soyka RP; Vogt PJ; Palsson H; Boyd SK; Guy P; Cripton PA; Ferguson SJ; Helgason B Med Eng Phys; 2016 Nov; 38(11):1339-1347. PubMed ID: 27641660 [TBL] [Abstract][Full Text] [Related]
14. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments. Trabelsi N; Yosibash Z J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921 [TBL] [Abstract][Full Text] [Related]
15. Comparison of non-invasive assessments of strength of the proximal femur. Johannesdottir F; Thrall E; Muller J; Keaveny TM; Kopperdahl DL; Bouxsein ML Bone; 2017 Dec; 105():93-102. PubMed ID: 28739416 [TBL] [Abstract][Full Text] [Related]
16. Can CT image deblurring improve finite element predictions at the proximal femur? Falcinelli C; Schileo E; Pakdel A; Whyne C; Cristofolini L; Taddei F J Mech Behav Biomed Mater; 2016 Oct; 63():337-351. PubMed ID: 27450036 [TBL] [Abstract][Full Text] [Related]
17. Personalized loading conditions for homogenized finite element analysis of the distal sections of the radius. Schenk D; Zysset P Biomech Model Mechanobiol; 2023 Apr; 22(2):453-466. PubMed ID: 36477423 [TBL] [Abstract][Full Text] [Related]
18. Validation of distal radius failure load predictions by homogenized- and micro-finite element analyses based on second-generation high-resolution peripheral quantitative CT images. Arias-Moreno AJ; Hosseini HS; Bevers M; Ito K; Zysset P; van Rietbergen B Osteoporos Int; 2019 Jul; 30(7):1433-1443. PubMed ID: 30997546 [TBL] [Abstract][Full Text] [Related]
19. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength. Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795 [TBL] [Abstract][Full Text] [Related]
20. In vivo repeatability of homogenized finite element analysis based on multiple HR-pQCT sections for assessment of distal radius and tibia strength. Schenk D; Mathis A; Lippuner K; Zysset P Bone; 2020 Dec; 141():115575. PubMed ID: 32795679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]