These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24508741)

  • 1. Fiber typing in aging muscle.
    Purves-Smith FM; Sgarioto N; Hepple RT
    Exerc Sport Sci Rev; 2014 Apr; 42(2):45-52. PubMed ID: 24508741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcineurin-mediated slow-type fiber expression and growth in reloading condition.
    Miyazaki M; Hitomi Y; Kizaki T; Ohno H; Katsumura T; Haga S; Takemasa T
    Med Sci Sports Exerc; 2006 Jun; 38(6):1065-72. PubMed ID: 16775546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of monkey triceps muscle fibers in microgravity conditions.
    Kischel P; Stevens L; Montel V; Picquet F; Mounier Y
    J Appl Physiol (1985); 2001 May; 90(5):1825-32. PubMed ID: 11299273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.
    Baldwin KM; Caiozzo VJ; Haddad F; Baker MJ; Herrick RE
    J Gravit Physiol; 1994 May; 1(1):P8-11. PubMed ID: 11538774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice.
    Asmussen G; Schmalbruch I; Soukup T; Pette D
    Exp Neurol; 2003 Dec; 184(2):758-66. PubMed ID: 14769368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties.
    Ohira Y; Yoshinaga T; Ohara M; Kawano F; Wang XD; Higo Y; Terada M; Matsuoka Y; Roy RR; Edgerton VR
    Cells Tissues Organs; 2006; 182(3-4):129-42. PubMed ID: 16914916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging.
    González E; Messi ML; Delbono O
    J Membr Biol; 2000 Dec; 178(3):175-83. PubMed ID: 11148759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in acetylcholine receptor function induce shifts in muscle fiber type composition.
    Jin TE; Wernig A; Witzemann V
    FEBS J; 2008 May; 275(9):2042-54. PubMed ID: 18384381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single muscle fiber function with concurrent exercise or nutrition countermeasures during 60 days of bed rest in women.
    Trappe S; Creer A; Slivka D; Minchev K; Trappe T
    J Appl Physiol (1985); 2007 Oct; 103(4):1242-50. PubMed ID: 17641219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.
    Andruchov O; Andruchova O; Wang Y; Galler S
    J Physiol; 2006 Feb; 571(Pt 1):231-42. PubMed ID: 16357018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myogenin, MyoD, and myosin heavy chain isoform expression following hindlimb suspension.
    Mozdziak PE; Greaser ML; Schultz E
    Aviat Space Environ Med; 1999 May; 70(5):511-6. PubMed ID: 10332949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe atrophy of slow myofibers in aging muscle is concealed by myosin heavy chain co-expression.
    Purves-Smith FM; Solbak NM; Rowan SL; Hepple RT
    Exp Gerontol; 2012 Dec; 47(12):913-8. PubMed ID: 22884852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers.
    Malisoux L; Francaux M; Nielens H; Theisen D
    J Appl Physiol (1985); 2006 Mar; 100(3):771-9. PubMed ID: 16322375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of resistance training on single muscle fiber contractile function in older men.
    Trappe S; Williamson D; Godard M; Porter D; Rowden G; Costill D
    J Appl Physiol (1985); 2000 Jul; 89(1):143-52. PubMed ID: 10904046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and fiber type composition of chronically inactive muscles.
    Roy RR; Zhong H; Monti RJ; Vallance KA; Kim JA; Edgerton VR
    J Gravit Physiol; 2000 Jul; 7(2):P103-4. PubMed ID: 12697552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of new ELISA method with established SDS-PAGE method for determination of muscle myosin heavy chain isoforms.
    Ríčný J; Soukup T
    Physiol Res; 2011; 60(6):899-904. PubMed ID: 21995898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled differentiation of myoblast cells into fast and slow muscle fibers.
    Matsuoka Y; Inoue A
    Cell Tissue Res; 2008 Apr; 332(1):123-32. PubMed ID: 18278513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of PTP1D, a protein tyrosine phosphatase with two SH2 domains, in a slow and fast skeletal muscle fibers.
    Mei L; Kachinsky AM; Seiden JE; Kuncl RW; Miller JB; Huganir RL
    Exp Cell Res; 1996 May; 224(2):379-90. PubMed ID: 8612715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle.
    Agbulut O; Noirez P; Butler-Browne G; Jockusch H
    FEBS Lett; 2004 Mar; 561(1-3):191-4. PubMed ID: 15013776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of slow- and fast-twitch skeletal muscle from mice with an inherited capacity for hypoxic exercise.
    Luedeke JD; McCall RD; Dillaman RM; Kinsey ST
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):373-82. PubMed ID: 15313493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.