BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24508761)

  • 21. Dynamic model for the accumulation of cadmium and zinc from water and sediment by the aquatic oligochaete, Tubifex tubifex.
    Redeker ES; Bervoets L; Blust R
    Environ Sci Technol; 2004 Dec; 38(23):6193-200. PubMed ID: 15597871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Roles of regional hydrodynamic and trophic contamination in cadmium bioaccumulation by Pacific oysters in the Marennes-Oléron Bay (France).
    Strady E; Blanc G; Baudrimont M; Schäfer J; Robert S; Lafon V
    Chemosphere; 2011 Jun; 84(1):80-90. PubMed ID: 21421251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Body size-dependent Cd accumulation in the zebra mussel Dreissena polymorpha from different routes.
    Tang WL; Evans D; Kraemer L; Zhong H
    Chemosphere; 2017 Feb; 168():825-831. PubMed ID: 27823784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California.
    Meador JP; Ernest DW; Kagley AN
    Sci Total Environ; 2005 Mar; 339(1-3):189-205. PubMed ID: 15740769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium Bioaccumulation in Aquatic Oligochaetes Using a Biodynamic Model: A Review of Values of Physiological Parameters and Model Validation Using Laboratory and Field Bioaccumulation Data.
    Méndez-Fernández L; Rodriguez P; Martínez-Madrid M
    Rev Environ Contam Toxicol; 2017; 243():149-172. PubMed ID: 28204900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaccumulation kinetics of cadmium and zinc in the freshwater decapod crustacean Paratya australiensis following multiple pulse exposures.
    McDonald S; Cresswell T; Hassell K
    Sci Total Environ; 2020 Jun; 720():137609. PubMed ID: 32145633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trophic transfer of Cd from larval chironomids (Chironomus riparius) exposed via sediment or waterborne routes, to zebrafish (Danio rerio): tissue-specific and subcellular comparisons.
    Béchard KM; Gillis PL; Wood CM
    Aquat Toxicol; 2008 Dec; 90(4):310-21. PubMed ID: 18950874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lac Dufault sediment core trace metal distribution, bioavailability and toxicity to Hyalella azteca.
    Nowierski M; Dixon DG; Borgmann U
    Environ Pollut; 2006 Feb; 139(3):532-40. PubMed ID: 16099560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus.
    Ruangsomboon S; Wongrat L
    Aquat Toxicol; 2006 Jun; 78(1):15-20. PubMed ID: 16504313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaccumulation, distribution and elimination of chlordecone in the giant freshwater prawn Macrobrachium rosenbergii: Field and laboratory studies.
    Lafontaine A; Gismondi E; Dodet N; Joaquim-Justo C; Boulangé-Lecomte C; Caupos F; Lemoine S; Lagadic L; Forget-Leray J; Thomé JP
    Chemosphere; 2017 Oct; 185():888-898. PubMed ID: 28746998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of water chemistry on the bioavailability of metals in sediment to Hyalella azteca: implications for sediment quality guidelines.
    Nowierski M; Dixon DG; Borgmann U
    Arch Environ Contam Toxicol; 2005 Oct; 49(3):322-32. PubMed ID: 16132414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiphase biokinetic modeling of cadmium accumulation in Daphnia magna from dietary and aqueous sources.
    Guan R; Wang WX
    Environ Toxicol Chem; 2006 Nov; 25(11):2840-6. PubMed ID: 17089705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaccumulation from food and water of cadmium, selenium and zinc in an estuarine fish, Ambassis jacksoniensis.
    Creighton N; Twining J
    Mar Pollut Bull; 2010 Oct; 60(10):1815-21. PubMed ID: 20591447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach.
    Casado-Martinez MC; Smith BD; Luoma SN; Rainbow PS
    Aquat Toxicol; 2010 Jun; 98(1):34-43. PubMed ID: 20149466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uptake and accumulation of cadmium, manganese and zinc by fisheries species: Trophic differences in sensitivity to environmental metal accumulation.
    O'Mara K; Adams M; Burford MA; Fry B; Cresswell T
    Sci Total Environ; 2019 Nov; 690():867-877. PubMed ID: 31302551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation and elimination of aqueous and dietary silver in Daphnia magna.
    Lam IK; Wang WX
    Chemosphere; 2006 Jun; 64(1):26-35. PubMed ID: 16442147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative importance of dissolved and food pathways for lead contamination in shrimp.
    Boisson F; Cotret O; Teyssié JL; El-Baradeï M; Fowler SW
    Mar Pollut Bull; 2003 Dec; 46(12):1549-57. PubMed ID: 14643781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation of cadmium in periphyton under various freshwater speciation conditions.
    Bradac P; Behra R; Sigg L
    Environ Sci Technol; 2009 Oct; 43(19):7291-6. PubMed ID: 19848136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling chronic dietary cadmium bioaccumulation and toxicity from periphyton to Hyalella azteca.
    Golding LA; Borgmann U; Dixon DG
    Environ Toxicol Chem; 2011 Jul; 30(7):1709-20. PubMed ID: 21425323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.