BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 24508842)

  • 1. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.
    Zhang X; Huang G
    J Environ Manage; 2014 Mar; 135():11-8. PubMed ID: 24508842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program.
    Zhang X; Huang G
    J Hazard Mater; 2013 Feb; 246-247():257-66. PubMed ID: 23313898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control.
    Lu HW; Huang GH; He L; Zeng GM
    J Environ Manage; 2009 Jan; 90(1):396-409. PubMed ID: 18096299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greenhouse gas emissions from municipal solid waste management in Vientiane, Lao PDR.
    Babel S; Vilaysouk X
    Waste Manag Res; 2016 Jan; 34(1):30-7. PubMed ID: 26608899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.
    Lu H; Sun S; Ren L; He L
    J Hazard Mater; 2015 Mar; 284():92-102. PubMed ID: 25463222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.
    Li J; He L; Fan X; Chen Y; Lu H
    Waste Manag Res; 2017 Aug; 35(8):874-889. PubMed ID: 28691636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty.
    Li YP; Huang GH
    Sci Total Environ; 2010 Sep; 408(20):4296-308. PubMed ID: 20591470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for reducing greenhouse gas emissions from municipal solid waste management in Pakistan.
    Michel Devadoss PS; Pariatamby A; Bhatti MS; Chenayah S; Shahul Hamid F
    Waste Manag Res; 2021 Jul; 39(7):914-927. PubMed ID: 33506744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making.
    He L; Huang GH; Lu H
    J Hazard Mater; 2011 Oct; 193():112-9. PubMed ID: 21816539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of municipal solid waste management on greenhouse gas emissions in Malaysia and the way forward.
    Michel Devadoss PS; Agamuthu P; Mehran SB; Santha C; Fauziah SH
    Waste Manag; 2021 Jan; 119():135-144. PubMed ID: 33059163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.
    Zhao W; Huppes G; van der Voet E
    Waste Manag; 2011 Jun; 31(6):1407-15. PubMed ID: 21316937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas emission mitigation potential from municipal solid waste treatment: A combined SD-LMDI model.
    Xiao S; Dong H; Geng Y; Fujii M; Pan H
    Waste Manag; 2021 Feb; 120():725-733. PubMed ID: 33223250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling for waste management associated with environmental-impact abatement under uncertainty.
    Li P; Li YP; Huang GH; Zhang JL
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5003-19. PubMed ID: 25516254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan.
    Sohoo I; Ritzkowski M; Guo J; Sohoo K; Kuchta K
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emission of greenhouse gases from waste incineration in Korea.
    Hwang KL; Choi SM; Kim MK; Heo JB; Zoh KD
    J Environ Manage; 2017 Jul; 196():710-718. PubMed ID: 28371748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.