These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24509097)

  • 1. New branches in the degradation pathway of monochlorocatechols by Aspergillus nidulans: a metabolomics analysis.
    Martins TM; Núñez O; Gallart-Ayala H; Leitão MC; Galceran MT; Silva Pereira C
    J Hazard Mater; 2014 Mar; 268():264-72. PubMed ID: 24509097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of chlorinated nitroaromatic compounds.
    Arora PK; Sasikala Ch; Ramana ChV
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2265-77. PubMed ID: 22331236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans.
    Martins TM; Hartmann DO; Planchon S; Martins I; Renaut J; Silva Pereira C
    Fungal Genet Biol; 2015 Jan; 74():32-44. PubMed ID: 25479309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes.
    Olaniran AO; Igbinosa EO
    Chemosphere; 2011 May; 83(10):1297-306. PubMed ID: 21531434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S-transferase, an evolved toluene o-monooxygenase, and gamma-glutamylcysteine synthetase.
    Rui L; Kwon YM; Reardon KF; Wood TK
    Environ Microbiol; 2004 May; 6(5):491-500. PubMed ID: 15049922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons.
    Marco-Urrea E; García-Romera I; Aranda E
    N Biotechnol; 2015 Dec; 32(6):620-8. PubMed ID: 25681797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.
    Berezina N; Yada B; Lefebvre R
    N Biotechnol; 2015 Jan; 32(1):47-53. PubMed ID: 25252021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of chlorinated aliphatic compounds.
    Leisinger T
    Curr Opin Biotechnol; 1996 Jun; 7(3):295-300. PubMed ID: 8785433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial genes and enzymes in the degradation of chlorinated compounds.
    Ogawa N; Miyashita K; Chakrabarty AM
    Chem Rec; 2003; 3(3):158-71. PubMed ID: 12900936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorobenzene degradation by Bacillus sp. TAS6CB: a potential candidate to remediate chlorinated hydrocarbon contaminated sites.
    Vyas TK; Murthy SR
    J Basic Microbiol; 2015 Mar; 55(3):382-8. PubMed ID: 23720149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic degradation of pollutants.
    Parales RE; Haddock JD
    Curr Opin Biotechnol; 2004 Aug; 15(4):374-9. PubMed ID: 15296933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygenases and dehalogenases: molecular approaches to efficient degradation of chlorinated environmental pollutants.
    Furukawa K
    Biosci Biotechnol Biochem; 2006 Oct; 70(10):2335-48. PubMed ID: 17031039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800.
    Arora PK; Srivastava A; Singh VP
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2298-2304. PubMed ID: 24057966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial degradation of chlorinated aromatic compounds.
    Sahasrabudhe SR; Modi VV
    Microbiol Sci; 1987 Oct; 4(10):300-3. PubMed ID: 3153591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes.
    de Jong E; Field JA
    Annu Rev Microbiol; 1997; 51():375-414. PubMed ID: 9343355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial degradation of chlorinated benzenes.
    Field JA; Sierra-Alvarez R
    Biodegradation; 2008 Jul; 19(4):463-80. PubMed ID: 17917704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and reconstruction of two new complete degradation pathways for 3-chlorocatechol and 4-chlorocatechol in Escherichia coli.
    Wang B; Gao J; Xu J; Fu X; Han H; Li Z; Wang L; Zhang F; Tian Y; Peng R; Yao Q
    J Hazard Mater; 2021 Oct; 419():126428. PubMed ID: 34171665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research advances in biodegradation of chlorophenols in environment].
    Jiang M; Niu S; Zhan H; Yuan J; Chen H
    Ying Yong Sheng Tai Xue Bao; 2003 Jun; 14(6):1003-6. PubMed ID: 12974015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases.
    Schlömann M
    Biodegradation; 1994 Dec; 5(3-4):301-21. PubMed ID: 7765840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols.
    Boersma MG; Solyanikova IP; Van Berkel WJ; Vervoort J; Golovleva LA; Rietjens IM
    J Ind Microbiol Biotechnol; 2001; 26(1-2):22-34. PubMed ID: 11548746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.